Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547268

RESUMO

Estrogen activity towards cancer-related pathways can impact therapeutic intervention. Recent omics data suggest possible crosstalk between estrogens/gender and MDM4, a key regulator of p53. Since MDM4 can either promote cell transformation or enhance DNA damage-sensitivity, we analysed in vivo impact of estrogens on both MDM4 activities. In Mdm4 transgenic mouse, Mdm4 accelerates the formation of fibrosarcoma and increases tumor sensitivity to cisplatin as well, thus confirming in vivo Mdm4 dual mode of action. Noteworthy, Mdm4 enhances chemo- and radio-sensitivity in male but not in female animals, whereas its tumor-promoting activity is not affected by mouse gender. Combination therapy of transgenic females with cisplatin and fulvestrant, a selective estrogen receptor degrader, was able to recover tumor cisplatin-sensitivity, demonstrating the relevance of estrogens in the observed sexual dimorphism. Molecularly, estrogen receptor-α alters intracellular localization of MDM4 by increasing its nuclear fraction correlated to decreased cell death, in a p53-independent manner. Importantly, MDM4 nuclear localization and intra-tumor estrogen availability correlate with decreased platinum-sensitivity and apoptosis and predicts poor disease-free survival in high-grade serous ovarian carcinoma. These data demonstrate estrogen ability to modulate chemo-sensitivity of MDM4-expressing tumors and to impinge on intracellular trafficking. They support potential usefulness of combination therapy involving anti-estrogenic drugs.

2.
Expert Opin Ther Pat ; 26(12): 1417-1429, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27603098

RESUMO

INTRODUCTION: Restoration of the p53 tumor suppressor function is an attractive anticancer strategy. Despite the development of several therapeutics targeting the two main p53 negative regulators, MDM2 and MDM4, no one has yet reached clinical application. In the past, several efforts have been employed to develop more specific and efficient compounds that can improve and/or overcome some of the features related to small molecule compounds (SMC). Peptides and peptidomimetics are emerging as attractive molecules given their increased selectivity, reduced toxicity and reduced tendency to develop tumor-resistance compared to SMC. Area covered: This article reviews publications and patents (publicly available up to April 2016) for peptides and derivatives aimed to reactivate the oncosuppressive function of p53, with a particular focus on inhibitors of MDM2/MDM4. Emphasis is placed on the efficacy of these compounds compared to the p53-reactivating small molecules developed so far. Expert opinion: A number of promising peptides for p53 reactivation in cancer therapy have been developed. These compounds appear to possess improved features compared to SMC, especially for their ability to simultaneously target the MDM2/MDM4 inhibitors, and their increased specificity.


Assuntos
Antineoplásicos/farmacologia , Peptídeos/uso terapêutico , Peptidomiméticos/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular , Desenho de Fármacos , Humanos , Neoplasias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Patentes como Assunto , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...