Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8200, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589728

RESUMO

Breast cancer (BC) is a leading cause of global cancer-related mortality in women, necessitating accurate tumor classification for timely intervention. Molecular and histological factors, including PAM50 classification, estrogen receptor α (ERα), breast cancer type 1 susceptibility protein (BRCA1), progesterone receptor (PR), and HER2 expression, contribute to intricate BC subtyping. In this work, through a combination of bioinformatic and wet lab screenings, followed by classical signal transduction and cell proliferation methods, and employing multiple BC cell lines, we identified enhanced sensitivity of ERα-positive BC cell lines to ALK and MELK inhibitors, inducing ERα degradation and diminishing proliferation in specific BC subtypes. MELK inhibition attenuated ERα transcriptional activity, impeding E2-induced gene expression, and hampering proliferation in MCF-7 cells. Synergies between MELK inhibition with 4OH-tamoxifen (Tam) and ALK inhibition with HER2 inhibitors revealed potential therapeutic avenues for ERα-positive/PR-positive/HER2-negative and ERα-positive/PR-negative/HER2-positive tumors, respectively. Our findings propose MELK as a promising target for ERα-positive/PR-positive/HER2-negative BC and highlight ALK as a potential focus for ERα-positive/PR-negative/HER2-positive BC. The synergistic anti-proliferative effects of MELK with Tam and ALK with HER2 inhibitors underscore kinase inhibitors' potential for selective treatment in diverse BC subtypes, paving the way for personalized and effective therapeutic strategies in BC management.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Proliferação de Células , Células MCF-7 , Fenótipo , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo
2.
Mol Cell Endocrinol ; 584: 112160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266771

RESUMO

PURPOSE: Metabolic reprogramming in breast cancer (BC) subtypes offers potential personalized treatment targets. Estrogen receptor α (ERα)-positive BC patients undergoing endocrine therapy (ET) can develop ET-resistant metastatic disease. Specific mutations, like Y537S in ERα, drive uncontrolled cell proliferation. Targeting mutant receptor levels shows promise for inhibiting growth in metastatic BC expressing ERα variants. Additionally, metabolic reprogramming occurs in ERα Y537S mutant cells. Consequently, we conducted a screen to identify metabolic proteins reducing intracellular levels of ERα Y537S and inhibiting cell proliferation. METHODS: Nine metabolic proteins were identified in a siRNA-based screen, with phosphomannose mutase 2 (PMM2) showing the most promise. We measured the impact of PMM2 depletion on ERα stability and cell proliferation in ERα Y537S mutant cells. Additionally, we tested the effect of PMM2 reduction on the hyperactive phenotype of the mutant and its proliferation when combined with metastatic BC treatment drugs. RESULTS: PMM2 emerged as a significant target due to its correlation with better relapse-free survival, overexpression in ERα-positive tumors, and its elevation in ERα Y537S-expressing cells. Depletion of PMM2 induces degradation of ERα Y537S, inhibits cell proliferation, and reduces ERα signaling. Notably, reducing PMM2 levels re-sensitizes ERα Y537S-expressing cells to certain ET drugs and CDK4/CDK6 inhibitors. Mechanistically, depletion of PMM2 leads to a reduction in ESR1 mRNA levels, resulting in decreased ERα receptor protein expression. Furthermore, the reduction of PMM2 decreases FOXA1 levels, which plays a crucial role in ERα regulation. CONCLUSIONS: Our findings establish PMM2 as an innovative therapeutic target for metastatic BC expressing the ERα Y537S variant, offering alternative strategies for managing and treating this disease.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Recidiva Local de Neoplasia , Mutação , Proliferação de Células/genética
3.
Front Endocrinol (Lausanne) ; 14: 1129162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143728

RESUMO

Targeting tumor cell metabolism is a new frontier in cancer management. Thus, metabolic pathway inhibitors could be used as anti-estrogen receptor α (ERα) breast cancer (BC) drugs. Here, the interplay among metabolic enzyme(s), the ERα levels and cell proliferation was studied. siRNA-based screen directed against different metabolic proteins in MCF10a, MCF-7 and MCF-7 cells genetically resistant to endocrine therapy (ET) drugs and metabolomic analyses in numerous BC cell lines unveil that the inhibition of GART, a key enzyme in the purine de novo biosynthetic pathway, induces ERα degradation and prevent BC cell proliferation. We report here that a reduced GART expression correlates with a longer relapse-free-survival (RFS) in women with ERα-positive BCs. ERα-expressing luminal A invasive ductal carcinomas (IDCs) are sensitive to GART inhibition and GART expression is increased in receptor-positive IDCs of high grade and stage and plays a role in the development of ET resistance. Accordingly, GART inhibition reduces ERα stability and cell proliferation in IDC luminal A cells where it deregulates 17ß-estradiol (E2):ERα signaling to cell proliferation. Moreover, the GART inhibitor lometrexol (LMX) and drugs approved for clinical treatment of primary and metastatic BC (4OH-tamoxifen and the CDK4/CDK6 inhibitors) exert synergic antiproliferative effects in BC cells. In conclusion, GART inhibition by LMX or other inhibitors of the de novo purine biosynthetic pathway could be a novel effective strategy for the treatment of primary and metastatic BCs.


Assuntos
Neoplasias da Mama , Carbono-Nitrogênio Ligases , Carcinoma Ductal de Mama , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Vias Biossintéticas , Recidiva Local de Neoplasia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Purinas , Carbono-Nitrogênio Ligases/metabolismo , Fosforribosilglicinamido Formiltransferase/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982977

RESUMO

A promising therapeutic strategy to delay and/or prevent the onset of neurodegenerative diseases (NDs) could be to restore neuroprotective pathways physiologically triggered by neurons against stress injury. Recently, we identified the accumulation of neuroglobin (NGB) in neuronal cells, induced by the 17ß-estradiol (E2)/estrogen receptor ß (ERß) axis, as a protective response that increases mitochondria functionality and prevents the activation of apoptosis, increasing neuron resilience against oxidative stress. Here, we would verify if resveratrol (Res), an ERß ligand, could reactivate NGB accumulation and its protective effects against oxidative stress in neuronal-derived cells (i.e., SH-SY5Y cells). Our results demonstrate that ERß/NGB is a novel pathway triggered by low Res concentrations that lead to rapid and persistent NGB accumulation in the cytosol and in mitochondria, where the protein contributes to reducing the apoptotic death induced by hydrogen peroxide (H2O2). Intriguingly, Res conjugation with gold nanoparticles increases the stilbene efficacy in enhancing neuron resilience against oxidative stress. As a whole, ERß/NGB axis regulation is a novel mechanism triggered by low concentration of Res to regulate, specifically, the neuronal cell resilience against oxidative stress reducing the triggering of the apoptotic cascade.


Assuntos
Nanopartículas Metálicas , Neuroblastoma , Humanos , Resveratrol/farmacologia , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor beta de Estrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ouro/farmacologia , Neuroglobina/farmacologia , Estresse Oxidativo , Apoptose , Neurônios/metabolismo
5.
Mol Oncol ; 16(19): 3568-3584, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36056637

RESUMO

Previously, we found that telaprevir (Tel), the inhibitor of hepatitis C virus NS3/4A serine protease, reduces estrogen receptor α (ERα) content at the transcriptional level without binding to the receptor, prevents ERα transcriptional activity, and inhibits basal and 17ß-estradiol (E2)-dependent cell proliferation in different breast cancer (BC) cell lines. Here, we further characterize the Tel action mechanisms on ERα levels and function, identify a possible molecular target of Tel in BC cells, and evaluate Tel as an antiproliferative agent for BC treatment. Tel-dependent reduction in ERα levels and function depends on a Tel-dependent decrease in FOXA1 levels and activity. The effect of Tel is transduced by the IGF1-R/AKT/FOXA1 pathway, with the antiviral compound interacting with IGF1-R. Tel prevents the proliferation of several BC cell lines, while it does not affect the proliferation of normal nontransformed cell lines, and its antiproliferative effect is correlated with the ratio of FOXA1/IGF1-R expression. In conclusion, Tel interferes with the IGF1-R/AKT/FOXA1 pathway and induces cell death in ERα-expressing BC cells. Thus, we propose that this antiviral could be repurposed for the treatment of ERα-expressing BC.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Antivirais/farmacologia , Neoplasias da Mama/genética , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Oligopeptídeos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina Proteases/metabolismo , Serina Proteases/farmacologia , Serina Proteases/uso terapêutico
6.
J Exp Clin Cancer Res ; 41(1): 141, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418303

RESUMO

BACKGROUND: Challenges exist in the clinical treatment of luminal estrogen receptor α (ERα)-positive breast cancers (BCs) both to prevent resistance to endocrine therapy (ET) and to treat ET-resistant metastatic BCs (MBC). Therefore, we evaluated if kinases could be new targets for the treatment of luminal primary and MBCs. METHODS: ~ 170 kinase inhibitors were applied to MCF-7 cells either with adaptative or genetic resistance to ET drugs and both ERα levels and cell proliferation were measured. Robust-Z-score calculation identified AZD7762 (CHK1/CHK2 inhibitor) as a positive hit. Subsequently, Kaplan-Meier analyses of CHK1 and CHK2 impact on ERα-positive BC patients relapse-free-survival (RFS), bioinformatic evaluations of CHK1 and CHK2 expression and activation status as a function of ERα activation status as well as drug sensitivity studies in ERα-positive BC cell lines, validation of the impact of the ATR:CHK1 and ATM:CHK2 pathways on the control of ERα stability and BC cell proliferation via inhibitor- and siRNA-based approaches, identification of the molecular mechanism required for inhibitor-dependent ERα degradation in BC and the impact of CHK1 and CHK2 inhibition on the 17ß-estradiol (E2):ERα signaling, synergy proliferation studies between ET-drugs and clinically relevant CHK1 inhibitors in different luminal BC cell lines, were performed. RESULTS: A reduced CHK1 expression correlates with a longer RFS in women with ERα-positive BCs. Interestingly, women carrying luminal A BC display an extended RFS when expressing low CHK1 levels. Accordingly, CHK1 and ERα activations are correlated in ERα-positive BC cell lines, and the ATR:CHK1 pathway controls ERα stability and cell proliferation in luminal A BC cells. Mechanistically, the generation of DNA replication stress rather than DNA damage induced by ATR:CHK1 pathway inhibition is a prerequisite for ERα degradation. Furthermore, CHK1 inhibition interferes with E2:ERα signaling to cell proliferation, and drugs approved for clinical treatment of primary and MBC (4OH-tamoxifen and the CDK4/CDK6 inhibitors abemaciclib and palbociclib) exert synergic effects with the CHK1 inhibitors in clinical trials for the treatment of solid tumors (AZD7762, MK8776, prexasertib) in preventing the proliferation of cells modeling primary and MBC. CONCLUSIONS: CHK1 could be considered as an appealing novel pharmacological target for the treatment of luminal primary and MBCs.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
7.
Toxics ; 9(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34678933

RESUMO

Phthalates comprise a group of synthetic chemicals present in the environment because of their wide use as plasticizers and as additives in products for personal care. Among others, diethyl phthalate (DEP) is largely used in products for infants, children, and adults, in which its exposure has been correlated with an increased risk of breast cancer. The adverse health outcomes deriving from phthalate exposure have been associated with their activity as endocrine disruptors (EDCs) of the steroid and thyroid hormone signaling by affecting developmental and reproductive health, and even carcinogenicity. However, the estrogen disruptor activities of DEP are still controversial, and the mechanism at the root of the estrogenic-disrupting action of DEP remains to be clarified. Here, we evaluated the DEP mechanism of action on the activation status of estrogen receptor α (ERα) by analyzing the receptor's phosphorylation as well as both nuclear and extra-nuclear pathways triggered by the receptor to modulate the proliferation of breast cancer cells. Although DEP does not bind to ERα, our results suggest that this phthalate ester exerts multiple parallel interactions with ERα signaling and emphasize the importance to determine an appropriate battery of in vitro methods that will include specific molecular mechanisms involved in the endocrine disruption.

8.
Mol Cell Endocrinol ; 538: 111452, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500041

RESUMO

Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17ß-estradiol (E2) through its estrogen receptors (i.e., ERα and ERß). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERß extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERß extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.


Assuntos
Membrana Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Animais , Estradiol/metabolismo , Camundongos , Especificidade de Órgãos , Transdução de Sinais
9.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440755

RESUMO

The expression of the α-subtype of Estrogen Receptor (ERα) characterizes most breast cancers (more than 75%), for which endocrine therapy is the mainstay for their treatment. However, a high percentage of ERα+ breast cancers are de novo or acquired resistance to endocrine therapy, and the definition of new targets for improving therapeutic interventions and the prediction of treatment response is demanding. Our previous data identified the ERα/AKT/neuroglobin (NGB) pathway as a common pro-survival process activated in different ERα breast cancer cell lines. However, no in vivo association between the globin and the malignity of breast cancer has yet been done. Here, we evaluated the levels and localization of NGB in ERα+ breast ductal carcinoma tissue of different grades derived from pre-and post-menopausal patients. The results indicate a strong association between NGB accumulation, ERα, AKT activation, and the G3 grade, while no association with the menopausal state has been evidenced. Analyses of the data set (e.g., GOBO) strengthen the idea that NGB accumulation could be linked to tumor cell aggressiveness (high grade) and resistance to treatment. These data support the view that NGB accumulation, mainly related to ER expression and tumor grade, represents a compensatory process, which allows cancer cells to survive in an unfavorable environment.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Carcinoma Ductal de Mama/química , Receptor alfa de Estrogênio/análise , Neuroglobina/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/terapia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gradação de Tumores , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas c-akt/análise , Transdução de Sinais , Microambiente Tumoral
10.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805656

RESUMO

17ß-estradiol (E2) exerts its physiological effects through the estrogen receptor α (i.e., ERα). The E2:ERα signaling allows the regulation of cell proliferation. Indeed, E2 sustains the progression of ERα positive (ERα+) breast cancers (BCs). The presence of ERα at the BC diagnosis drives their therapeutic treatment with the endocrine therapy (ET), which restrains BC progression. Nonetheless, many patients develop metastatic BCs (MBC) for which a treatment is not available. Consequently, the actual challenge is to complement the drugs available to fight ERα+ primary and MBC. Here we exploited a novel anti-estrogen discovery platform to identify new Food and Drug Administration (FDA)-approved drugs inhibiting E2:ERα signaling to cell proliferation in cellular models of primary and MBC cells. We report that the anti-fungal drugs clotrimazole (Clo) and fenticonazole (Fenti) induce ERα degradation and prevent ERα transcriptional signaling and proliferation in cells modeling primary and metastatic BC. The anti-proliferative effects of Clo and Fenti occur also in 3D cancer models (i.e., tumor spheroids) and in a synergic manner with the CDK4/CDK6 inhibitors palbociclib and abemaciclib. Therefore, Clo and Fenti behave as "anti-estrogens"-like drugs. Remarkably, the present "anti-estrogen" discovery platform represents a valuable method to rapidly identify bioactive compounds with anti-estrogenic activity.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Clotrimazol/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Imidazóis/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Antifúngicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Aprovação de Drogas , Descoberta de Drogas , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proteólise , Transdução de Sinais , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
11.
Cancers (Basel) ; 12(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352737

RESUMO

Estrogen receptor α expressing breast cancers (BC) are classically treated with endocrine therapy. Prolonged endocrine therapy often results in a metastatic disease (MBC), for which a standardized effective therapy is still lacking. Thus, new drugs are required for primary and metastatic BC treatment. Here, we report that the Food and Drug Administration (FDA)-approved drugs, ouabain and digoxin, induce ERα degradation and prevent proliferation in cells modeling primary and metastatic BC. Ouabain and digoxin activate the cellular proteasome, instigating ERα degradation, which causes the inhibition of 17ß-estradiol signaling, induces the cell cycle blockade in the G2 phase, and triggers apoptosis. Remarkably, these effects are independent of the inhibition of the Na/K pump. The antiproliferative effects of ouabain and digoxin occur also in diverse cancer models (i.e., tumor spheroids and xenografts). Additionally, gene profiling analysis reveals that these drugs downregulate the expression of genes related to endocrine therapy resistance. Therefore, ouabain and digoxin behave as 'anti-estrogen'-like drugs, and are appealing candidates for the treatment of primary and metastatic BCs.

12.
Nanomaterials (Basel) ; 10(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977463

RESUMO

Strongly hydrophilic gold nanoparticles (AuNPs), functionalized with citrate and L-cysteine, were synthetized and used as Resveratrol (RSV) vehicle to improve its bioavailability. Two different conjugation procedures were investigated: the first by adding RSV during AuNPs synthesis (1) and the second by adding RSV after AuNPs synthesis (2). The two different conjugated systems, namely AuNPs@RSV1 and AuNPs@RSV2 respectively, showed good loading efficiency (η%): η1 = 80 ± 5% for AuNPs@RSV1 and η2 = 20 ± 3% for AuNPs@RSV2. Both conjugated systems were investigated by means of Dynamic Light Scattering (DLS), confirming hydrophilic behavior and nanodimension (<2RH> 1 = 45 ± 12 nm and <2RH> 2 = 170 ± 30 nm). Fourier Transform Infrared Spectroscopy (FT-IR), Synchrotron Radiation induced X-Ray Photoelectron Spectroscopy (SR-XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) techniques were applied to deeply understand the hooking mode of RSV on AuNPs surface in the two differently conjugated systems. Moreover, the biocompatibility of AuNPs and AuNPs@RSV1 was evaluated in the concentration range 1.0-45.5 µg/mL by assessing their effect on breast cancer cell vitality. The obtained data confirmed that, at the concentration used, AuNPs do not induce cell death, whereas AuNPs@RSV1 maintains the same anticancer effects as the unconjugated RSV.

13.
J Cell Physiol ; 235(10): 6697-6710, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31989654

RESUMO

Kinetic analyses of diverse physiological processes have the potential to unveil new aspects of the molecular regulation of cell biology at temporal levels. 17ß-estradiol (E2) regulates diverse physiological effects by binding to the estrogen receptor α (ERα), which primarily works as a transcription factor. Although many molecular details of the modulation of ERα transcriptional activity have been discovered including the impact of receptor plasma membrane localization and its relative E2-evoked signaling, the knowledge of real-time ERα transcriptional dynamics in living cells is lacking. Here, we report the generation of MCF-7 and HeLa cells stably expressing a modified luciferase under the control of an E2-sensitive promoter, which activity can be continuously monitored in living cells and show that E2 induces a linear increase in ERα transcriptional activity. Ligand-independent (e.g., epidermal growth factor) receptor activation was also detected in a time-dependent manner. Kinetic profiles of ERα transcriptional activity measured in the presence of both receptor antagonists and inhibitors of ERα plasma membrane localization reveal a biphasic dynamic of receptor behavior underlying novel aspects of receptor-regulated transcriptional effects. Finally, analysis of the rate of the dose-dependent E2 induction of ERα transcriptional activity demonstrates that low doses of E2 induce an effect identical to that determined by high concentrations of E2 as a function of the duration of hormone administration. Overall, we present the characterization of sensitive stable cell lines were to study the kinetic of E2 transcriptional signaling and to identify new aspects of ERα function in different physiological or pathophysiological conditions.


Assuntos
Estradiol/genética , Receptor alfa de Estrogênio/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Células MCF-7 , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética
14.
Cancers (Basel) ; 12(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936631

RESUMO

Although soy consumption is associated with breast cancer prevention, the low bioavailability and the extensive metabolism of soy-active components limit their clinical application. Here, the impact of daidzein (D) and its metabolites on estrogen-dependent anti-apoptotic pathway has been evaluated in breast cancer cells. In estrogen receptor α-positive breast cancer cells treated with D and its metabolites, single or in mixture, ERα activation and Neuroglobin (NGB) levels, an anti-apoptotic estrogen/ERα-inducible protein, were evaluated. Moreover, the apoptotic cascade activation, as well as the cell number after stimulation was assessed in the absence/presence of paclitaxel to determine the compound effects on cell susceptibility to a chemotherapeutic agent. Among the metabolites, only D-4'-sulfate maintains the anti-estrogenic effect of D, reducing the NGB levels and rendering breast cancer cells more prone to the paclitaxel treatment, whereas other metabolites showed estrogen mimetic effects, or even estrogen independent effects. Intriguingly, the co-stimulation of D and gut metabolites strongly reduced D effects. The results highlight the important and complex influence of metabolic transformation on isoflavones physiological effects and demonstrate the need to take biotransformation into account when assessing the potential health benefits of consumption of soy isoflavones in cancer.

15.
Antioxid Redox Signal ; 32(4): 217-227, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686530

RESUMO

Aims: Nuclear factor (erythroid-derived 2)-like-2 factor (NRF-2) is a transcription factor well known to provide an advantage for cancer growth and survival regulating the cellular redox pathway. In breast cancer cells, we recently identified the monomeric heme-globin neuroglobin (NGB) as part of a new mechanism induced by the steroid hormone 17ß-estradiol (E2) against oxidative stress. While there is mounting evidence suggesting a critical role of NGB as a sensor of oxidative stress, scarce information is available about its involvement in NRF-2 pathway activation in breast cancer cells. Results: Although NGB is not involved in the rapid E2-induced NRF-2 stability, E2 loses the capacity to regulate the expression of NRF-2-dependent genes in NGB-depleted MCF-7 cells. These data strongly sustain a role of NGB as a compensatory protein in the E2-activated intracellular pathway devoted to the increase of cancer cells tolerance to reactive oxygen species (ROS) generation in stressing conditions acting as key regulator of NRF-2 pathway activity in a time-dependent manner. Innovation: In this study, we identified a new role of NGB in the cell response to oxidative stress. Conclusion: Altogether, reported results open new insights on the NGB effect in regulating intracellular pathways related to cell adaptive response to stress and, as consequence, to cell survival, beyond its direct effect as ROS scavenger, opening new prospective in cancer therapeutic intervention.


Assuntos
Antioxidantes/farmacologia , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglobina/genética , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Neuroglobina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
J Cell Physiol ; 234(4): 3147-3157, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30421506

RESUMO

Neuroglobin (NGB), an antiapoptotic protein upregulated by 17ß-estradiol (E2), is part of E2/estrogen receptor α (ERα) pathway pointed to preserve cancer cell survival in presence of microenvironmental stressors including chemotherapeutic drugs. Here, the possibility that resveratrol (Res), an anticancer plant polyphenol, could increase the susceptibility of breast cancer cells to paclitaxel (Pacl) by affecting E2/ERα/NGB pathway has been evaluated. In MCF-7 and T47D (ERα-positive), but not in MDA-MB 231 (ERα-negative) nor in SK-N-BE (ERα and ERß positive), Res decreases NGB levels interfering with E2/ERα-induced NGB upregulation and with E2-induced ERα and protein kinase B phosphorylation. Although Res treatment does not reduce cell viability by itself, this compound potentiates Pacl proapoptotic effects. Notably, the increase of NGB levels by NGB expression vector transfection prevents Pacl or Res/Pacl effects. Taken together, these findings indicate a new Res-based mechanism that acts on tumor cells impairing the E2/ERα/NGB signaling pathways and increasing cancer cell susceptibility to chemotherapeutic agent.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Neuroglobina/metabolismo , Paclitaxel/farmacologia , Resveratrol/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sinergismo Farmacológico , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Neuroglobina/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
17.
Int J Mol Sci ; 19(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189583

RESUMO

The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and ß (ERß), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.


Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Neoplasias/metabolismo , Polifenóis/farmacologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polifenóis/química , Polifenóis/uso terapêutico , Receptores de Estrogênio/química , Relação Estrutura-Atividade
18.
Eur J Nutr ; 57(8): 2677-2691, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29696400

RESUMO

INTRODUCTION: The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS: This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS: Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Fenóis/farmacocinética , Fatores Sexuais , Antioxidantes/farmacocinética , Disponibilidade Biológica , Dieta , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Metanálise como Assunto , Estresse Oxidativo/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
J Cell Physiol ; 233(7): 5087-5103, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29219195

RESUMO

Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17ß-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Neuroglobina/genética , Estresse Oxidativo/genética , Animais , Apoptose/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estradiol/genética , Estradiol/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neuroglobina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
20.
PLoS One ; 12(12): e0189179, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216269

RESUMO

Environmental factors or adverse growth conditions that may reduce cell function or viability are considered stress. The cell ability to sense and respond to environmental stresses determine its function and survival destiny. We recently defined Neuroglobin (NGB), a heme-protein, as a compensatory protein in the 17ß-Estradiol (E2) anti-apoptotic activity and as a sensor of oxidative stress in both neurons and breast cancer cells. Here, the possibility that NGB levels could represent a pivotal regulator of integrated response of cancer cells to stress has been evaluated. Data obtained in neuroblastoma and in breast cancer cell lines evidence that nutrient deprivation significantly up-regulated NGB levels at different time points. However, the analysis of autophagy activation led to exclude any possible role of stress- or E2-induced NGB in the upstream regulation of general autophagy. However, the over-expression of Flag-NGB in ERα stable transfected HEK-293 cells completely affects nutrient deprivation-induced decrease in cell number. In addition, reported results indicate that modulation of the anti-apoptotic Bcl-2 level may play a key role in the protective NGB function against energetic stress. Overall, these data define a role of NGB as compensatory protein in the cell machinery activated in response to stress and as general stress adaptation marker of cancer cells susceptible to oxidative stress, oxygen and, as demonstrated here for the first time, even to nutrient willingness. Despite the lacking of any direct NGB role on autophagic flux activated by energetic stress, NGB upregulation appears functional in delaying stress-related cell death allowing an appropriate cell response and adaptation to the changing extracellular conditions.


Assuntos
Neoplasias da Mama/patologia , Globinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuroblastoma/patologia , Neurônios/patologia , Autofagia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Cultura , Globinas/metabolismo , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Neuroglobina , Neurônios/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...