Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 211, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118163

RESUMO

BACKGROUND: The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation. RESULTS: Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells. CONCLUSIONS: By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.


Assuntos
Diferenciação Celular , Endoderma , Epigênese Genética , Células-Tronco Embrionárias Humanas , Humanos , Endoderma/citologia , Endoderma/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Faringe/citologia , Faringe/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos
2.
Nat Commun ; 15(1): 5956, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009581

RESUMO

DNA methylation (DNAm) is one of the most reliable biomarkers of aging across mammalian tissues. While the age-dependent global loss of DNAm has been well characterized, DNAm gain is less characterized. Studies have demonstrated that CpGs which gain methylation with age are enriched in Polycomb Repressive Complex 2 (PRC2) targets. However, whole-genome examination of all PRC2 targets as well as determination of the pan-tissue or tissue-specific nature of these associations is lacking. Here, we show that low-methylated regions (LMRs) which are highly bound by PRC2 in embryonic stem cells (PRC2 LMRs) gain methylation with age in all examined somatic mitotic cells. We estimated that this epigenetic change represents around 90% of the age-dependent DNAm gain genome-wide. Therefore, we propose the "PRC2-AgeIndex," defined as the average DNAm in PRC2 LMRs, as a universal biomarker of cellular aging in somatic cells which can distinguish the effect of different anti-aging interventions.


Assuntos
Envelhecimento , Biomarcadores , Metilação de DNA , Epigênese Genética , Complexo Repressor Polycomb 2 , Rejuvenescimento , Animais , Envelhecimento/metabolismo , Envelhecimento/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Rejuvenescimento/fisiologia , Biomarcadores/metabolismo , Humanos , Camundongos , Senescência Celular/genética , Ilhas de CpG , Células-Tronco Embrionárias/metabolismo , Masculino , Feminino
4.
Nat Aging ; 4(1): 14-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38102454

RESUMO

Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Rejuvenescimento , Humanos , Animais , Camundongos , Envelhecimento/genética , Reprogramação Celular/genética , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA