Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 222, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36131235

RESUMO

BACKGROUND: Pseudomonas spp. promotes plant growth and colonizes a wide range of environments. During the annotation of a Coffea arabica ESTs database, we detected a considerable number of contaminant Pseudomonas sequences, specially associated with leaves. The genome of a Pseudomonas isolated from coffee leaves was sequenced to investigate in silico information that could offer insights about bacterial adaptation to coffee phyllosphere. In parallel, several experiments were performed to confirm certain physiological characteristics that could be associated with phyllospheric behavior. Finally, in vivo and in vitro experiments were carried out to verify whether this isolate could serve as a biocontrol agent against coffee rust and how the isolate could act against the infection.  RESULTS: The isolate showed several genes that are associated with resistance to environmental stresses, such as genes encoding heat/cold shock proteins, antioxidant enzymes, carbon starvation proteins, proteins that control osmotic balance and biofilm formation. There was an increase of exopolysaccharides synthesis in response to osmotic stress, which may protect cells from dessication on phyllosphere. Metabolic pathways for degradation and incorporation into citrate cycle of phenolic compounds present in coffee were found, and experimentally confirmed. In addition, MN1F was found to be highly tolerant to caffeine. The experiments of biocontrol against coffee leaf rust showed that the isolate can control the progress of the disease, most likely through competition for resources. CONCLUSION: Genomic analysis and experimental data suggest that there are adaptations of this Pseudomonas to live in association with coffee leaves and to act as a biocontrol agent.


Assuntos
Basidiomycota , Coffea , Antioxidantes , Basidiomycota/genética , Cafeína , Carbono , Citratos , Coffea/microbiologia , Proteínas e Peptídeos de Choque Frio , Genômica , Pseudomonas/genética
2.
Microbiol Res ; 263: 127129, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35907286

RESUMO

Many Pseudomonas species promote plant growth and colonize a wide range of environments. The annotation of a Coffea arabica ESTs database revealed a considerable number of Pseudomonas sequences. To evaluate the genomic and physiology of Pseudomonas that inhabit coffee plants, fluorescent Pseudomonas from C. arabica root environment were isolated. Two of them had their genomes sequenced; one from rhizospheric soil, named as MNR3A, and one from internal part of the root, named as EMN2. In parallel, we performed biochemical and physiological experiments to confirm genomic analyses results. Interestingly, EMN2 has achromobactin and aerobactin siderophore receptors, but does not have the genes responsible for the production of these siderophores, suggesting an interesting bacterial competition strategy. The two bacterial isolates were able to degrade and catabolize plant phenolic compounds for their own benefit. Surprisingly, MNR3A and EMN2 do not contain caffeine methylases that are responsible for the catabolism of caffeine. In fact, bench experiments confirm that the bacteria did not metabolize caffeine, but were resistant and chemically attracted to it. Furthermore, both bacteria, most especially MNR3A, were able to increase growth of lettuce plants. Our results indicate MNR3A as a potential plant growth promoting bacteria.


Assuntos
Coffea , Bactérias/metabolismo , Cafeína/metabolismo , Genômica , Pseudomonas/genética , Pseudomonas/metabolismo , Sideróforos/metabolismo
3.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669086

RESUMO

Beneficial plant-microbe interactions lead to physiological and biochemical changes that may result in plant-growth promotion. This study evaluated the effect of the interaction between sugarcane and endophytic bacterial strains on plant physiological and biochemical responses under two levels of nitrogen (N) fertilization. Six strains of endophytic bacteria, previously selected as plant growth-promoting bacteria (PGPB), were used to inoculate sugarcane mini stalks, with and without N fertilization. After 45 days, biomass production; shoot nutrient concentrations; foliar polyamine and free amino acid profiles; activities of nitrate reductase and glutamine synthase; and the relative transcript levels of the GS1, GS2, and SHR5 genes in sugarcane leaves were determined. All six endophytic strains promoted sugarcane growth, increasing shoot and root biomass, plant nutritional status, and the use efficiency of most nutrients. The inoculation-induced changes at the biochemical level altered the foliar free amino acid and polyamine profiles, mainly regarding the relative concentrations of citrulline, putrescine, glycine, alanine, glutamate, glutamine, proline, and aspartate. The transcription of GS1, GS2, and SHR5 was higher in the N fertilized seedlings, and almost not altered by endophytic bacterial strains. The endophytic strains promoted sugarcane seedlings growth mainly by improving nutrient efficiency. This improvement could not be explained by their ability to induce the production of amino acid and polyamine composts, or GS1, GS2, and SHR5, showing that complex interactions may be associated with enhancement of the sugarcane seedlings' performance by endophytic bacteria. The strains demonstrated biotechnological potential for sugarcane seedling production.

4.
Antonie Van Leeuwenhoek ; 112(2): 283-295, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30194506

RESUMO

Few studies have evaluated endophytic bacteria in relation to plant growth promotion, nitrogen uptake and biological control. The aim of this study was to molecularly and physiologically characterize thirteen endophytic bacteria strains, evaluate their biological control properties and their ability to promote plant growth and plant N nutrition. All the strains produced indole acetic acid and promoted increase of plant biomass, N accumulative amount and N-use efficiency index. None of the strains carries the nifH gene. Four strains stimulated plant nitrate reductase activity, four solubilized phosphate, nine produced siderophores and none produced HCN. Seven strains inhibited Bipolaris sacchari growth and one was antagonistic to Ceratocystis paradoxa. The pathogens were inhibited by the production of diffusible and volatile metabolites by the bacterial strains. Moreover, this is the first study to demonstrate the effect of Delftia acidovorans on sugarcane plant growth, nitrogen metabolism improvement and antagonism to B. sacchari. The most efficient strains in promoting plant growth and exhibiting antagonistic activities towards fungal pathogens were Herbaspirillum frinsingense (IAC-BECa-152) and three Pantoea dispersa strains (IAC-BECa-128, IAC-BECa-129, and IAC-BECa-132). These bacteria show potential to be used as inoculants for sustainable agricultural management, mainly at the seedling production phase.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Nitrogênio/metabolismo , Saccharum/crescimento & desenvolvimento , Saccharum/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Filogenia , Saccharum/metabolismo , Sideróforos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...