Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764614

RESUMO

Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.

2.
ACS Appl Mater Interfaces ; 13(5): 6778-6784, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502171

RESUMO

Multiferroic heterostructures based on the strain-mediated mechanism present ultralow heat dissipation and large magnetoelectric coupling coefficient, two conditions that require endless improvement for the design of fast nonvolatile random access memories with reduced power consumption. This work shows that a structure consisting of a [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3 (001) substrate on which a crystalline FeGa(001)/MgO(001) bilayer is deposited exhibits a giant magnetoelectric coupling coefficient of order 15 × 10-6 s m-1 at room temperature. That result is a 2-fold increment over the previous highest value. The spatial orientation of the magnetization vector in the epitaxial FeGa film is switched 90° with the application of electric field. The symmetry of the magnetic anisotropy is studied by the angular dependence of the remanent magnetization, demonstrating that poling the sample generates a switchable uniaxial magnetoelastic anisotropy in the film that overcomes the native low 4-fold magnetocrystalline anisotropy energy. Magnetic force microscopy shows that the switch of the easy axis activates the displacement of domain walls and the domain structures remain stable after that point. This result highlights the interest in single-crystalline structures including materials with large magnetoelastic coupling and small magnetocrystalline anisotropy for low-energy-consuming spintronic applications.

3.
Phys Chem Chem Phys ; 22(1): 196-202, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31799518

RESUMO

The electronic properties of Tm and Lu atoms adsorbed on nanoscale Cu2N insulating islands and on a clean Cu(100) surface have been investigated by scanning tunnelling microscopy and spectroscopy, and density functional calculations modelling the electronic structure of the rare earth atoms were performed. While Lu adatoms display the same spectra on both surfaces, tunnelling spectra of Tm on Cu2N indicate a state at ≃0.8 V or ≃1.9 V bias, depending on the 4f population of the adatom, 4f12 or 4f13, which is not present on Tm atoms adsorbed on Cu(100). Although inelastic 4f-spin-flip excitations were not detected, variation of tunnelling through the strongly correlated d-electrons indicates that the insulating layer opens a pathway to access the electronic state of those 4f electrons in the single adatom.

4.
Sci Rep ; 5: 13709, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26333417

RESUMO

High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...