Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 11(6): 3358-3364, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324890

RESUMO

Plant extracts and other plant products have been used as an alternative to synthetic fungicides or an additional way to reduce their use. The choice of plant extracts and their application depends on their functional characteristics, availability, cost-effectiveness, and their impact on phytopathogens, and also on the environment. Therefore, the present study aims to assess the potential of Celtis australis methanolic extracts as source of compounds with antifungal activity. Methanolic extracts prepared from leaves and unripe mesocarps of C. australis collected from different localities of Montenegro (Podgorica-PG, Donja Gorica-DG, and Bar-BR) were evaluated for their phenolic compounds' composition as well as antifungal and cytotoxic properties. Obtained results revealed that extracts contain various bioactive constituents including phenolic acids, flavonoids, and their derivatives. The predominant phenolic acid was ferulic acid, identified in leaf samples from DG (187.97 mg/100 g dw), while isoorientin was the most abundant phenolic compound found in all examined samples. Regarding antifungal potential of the tested samples, all but one (prepared from mesocarp BR) possessed higher activity than Previcur, a commercial systemic fungicide intended to control seedlings. In vitro studies on HaCaT cell line showed that the extracts had no toxic effect toward the tested cell line. These results lead to the conclusion that methanolic extracts of C. australis can become an alternative to the use of synthetic fungicides in agriculture. Those extracts represent natural biodegradable fungicides and enable more efficient control of pathogenic fungi.

2.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770834

RESUMO

Twelve steroid based hydrazones were in silico evaluated using computer program PASS as antimicrobial agents. The experimental evaluation revealed that all compounds have low to moderate antibacterial activity against all bacteria tested, except for B. cereus with MIC at a range of 0.37-3.00 mg/mL and MBC at 0.75-6.00 mg/mL. The most potent appeared to be compound 11 with MIC/MBC of 0.75/1.5 mg/mL, respectively. The evaluation of antibacterial activity against three resistant strains MRSA, E. coli and P. aeruginosa demonstrated superior activity of compounds against MRSA compared with ampicillin, which did not show bacteriostatic or bactericidal activities. All compounds exhibited good antifungal activity with MIC of 0.37-1.50 mg/mL and MFC of 1.50-3.00 mg/mL, but with different sensitivity against fungi tested. According to docking studies, 14-alpha demethylase inhibition may be responsible for antifungal activity. Two compounds were evaluated for their antibiofilm activity. Finally, drug-likeness and docking prediction were performed.


Assuntos
Anti-Infecciosos , Antifúngicos , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Hidrazonas/farmacologia , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Esteroides/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
3.
Antibiotics (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830198

RESUMO

This study reports the antimicrobial activities of the biopolymers poly[3-(3,4-dihydoxyphenyl)glyceric acid] (PDHPGA) and poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO), extracted from the six plants of Boraginaceae family: Symphytum asperum (SA), S. caucasicum (SC), S. gr and iflorum (SG), Anchusa italica (AI), Cynoglosum officinale (CO), and Borago officinalis (BO) collected in various parts of Georgia. The study revealed that the antibacterial activities were moderate, and biopolymers from only three plants showed activities against all tested bacteria. Biopolymers from CO stems as well as SC and AI did not show any activity except low activity against a resistant P. aeruginosa strain, which was the most resistant among all three resistant strains. On the other hand, the antifungal activity was better compared to the antibacterial activity. Biopolymers from BO stems exhibited the best activities with MIC/MFC at 0.37-1.00 mg/mL and 0.75-1.5 mg/L, respectively, followed by those from SG stems. Biopolymers from SC and AI roots showed antifungal activities against all six fungi, in contrast to the antibacterial activity, while biopolymers from CO stems and SA roots had activities against four fungi and one fungus, respectively. The sugar-based catechol-containing biopolymers from BO stems demonstrated the best activities among all tested biopolymers against T. viride, P. funiculosum, P. cyclpoium var verucosum, and C. albicans (MIC 0.37 mg/mL). In addition, biopolymers from SG stems were half as active against A. fumigatus and T. viride as ketoconazole. Biopolymers from all plant materials except for CO stems showed higher potency than ketoconazole against T. viride. For the first time, it was shown that all plant materials exhibited better activity against C. albicans, one of the most dreadful fungal species.

4.
J Fungi (Basel) ; 9(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36675891

RESUMO

Mushrooms are valued worldwide for their nutritional, organoleptic and chemical properties. The aim of this study was to determine the chemical composition (free sugars, organic acids, fatty acids, tocopherols and phenolic compounds) and bioactivity of three wild mushrooms (Lactarius piperatus, Lactarius quietus and Lactarius vellereus) from Serbia. Chemical analysis was performed with HPLC-RI and UFLC-PDA (for hydrophilic compounds) and with GC-FID and HPLC-FP (for lipophilic compounds). The analysis of phenolic compounds was performed by UFLC-DAD. Biological activities were evaluated using three different assays (microdilution, TBARS and SRB assays). The results showed that the fruiting bodies were rich in mannitol and trehalose. The main organic acids were oxalic acid and citric acid. As for lipophilic components, stearic, oleic and linoleic acids and ß-tocopherol dominated in all the species studied. In addition, the methanolic and ethanolic extracts obtained showed antibacterial, antibiofilm and antioxidant properties. As for cytotoxicity, the extracts were not toxic or only moderately toxic toward different tumor cell lines. According to the results, the selected Serbian mushrooms are a rich source of bioactive compounds, and due to their good biological potential, they can be further exploited as functional ingredients beneficial to human health (antimicrobial agents, antioxidants).

5.
Antibiotics (Basel) ; 11(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36551404

RESUMO

Chronic tonsillitis (CT) is a global health issue which can impair patient's quality of life and has an important socioeconomic impact due to the nonrational use of antibiotics, increased antimicrobial resistance and frequent need for surgical treatment. In order to isolate and identify the causing agents of CT, a total of 79 postoperative palatine and adenoid tissue samples were obtained from the ENT Clinic, KBC Zvezdara, Belgrade, Serbia. Culture identification was performed by MALDI-TOF MS and the Staphylococcus aureus isolates were tested for biofilm forming capability and antibiotic susceptibility. Additionally, a histological examination of palatine and adenoid tissue was performed in order to detect the presence of CT-causing bacteria. The slight majority of participants were females with median age of 28 years for adult patients (group I) and 6 years for children (group II). Analysis of the incidence of bacteria isolated from tissue samples in both groups showed the highest prevalence of S. aureus, Streptococcus oralis and Streptococcus parasanquinis. In addition to interfollicular hyperplasia, colonies of species S. aureus were detected in histological material. The presence of biofilm might be the reason for the recurrence of infection. Therefore, searching for a new treatment of CT is of great importance.

6.
Heliyon ; 8(10): e11042, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36281371

RESUMO

Quince (Cydonia oblonga Mill.) is an astringent fruit widely processed into marmalade and other sweets through processes that discard the peel as a by-product. Therefore, this study was performed to characterize the quince peel composition in nutrients and phytochemicals and evaluate its in vitro biological activity, following a "zero waste" approach. The quince peel dry powder was particularly rich in fiber (20.2 g/100 g), fructose (34 g/100 g), malic acid (7.2 g/100 g), and potassium (692 mg/100 g). Extracts prepared by dynamic hydroethanolic maceration and hot water extraction yielded 4.70 and 4.27 mg/g of phenolic compounds, respectively, with a prevalence of flavan-3-ols. The hydroethanolic extract was the most effective in inhibiting lipid peroxidation and oxidative hemolysis, and also presented better antimicrobial effects against foodborne pathogens, which agreed with the highest flavan-3-ol contents. The extracts were better than control synthetic food additives against some tested fungal and bacterial strains. On the other hand, no ability to inhibit nitric oxide production or toxicity to the tumor and non-tumor cell lines was observed. Furthermore, the solid residues remaining after extraction contained 35-37 g/100 g of fiber. Overall, quince peel can be upcycled into fiber-rich and bioactive ingredients to endow the value chain with natural food fortifiers, preservatives, and health promoters.

7.
Int J Biol Macromol ; 221: 48-60, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36058395

RESUMO

Escin is an amphiphilic and weakly acidic drug that oral administration may lead to the irritation of gastric mucosa. The entrapment of escin into chitosan (CH)/xanthan gum (XG)-based polyelectrolyte complexes (PECs) can facilitate controlled drug release which may be beneficial for the reduction of its side effects. This study aimed to investigate the influence of escin content and drying method on the formation, physicochemical, and controlled, pH-dependent drug release properties of CH/XG-based PECs. Measurements of transmittance, conductivity, and rheological characterization confirmed the formation of CH/XG-based PECs with escin entrapped at escin-to-polymers mass ratios 1:1, 1:2, and 1:4. Ambient-dried PECs had higher yield, entrapment efficiency, and escin content in comparison with spray-dried ones. FT-IR spectra confirmed the interactions between CH, XG, and escin, which were stronger in ambient-dried PECs. PXRD and DSC analyses showed the amorphous escin character in all dry PECs, regardless of the drying method. The most promising controlled and pH-dependent in vitro escin release was from the ambient-dried PEC at the escin-to-polymers mass ratio of 1:1. For that reason and due to the highest yield and entrapment efficiency, this carrier has the potential to prevent the irritation of gastric mucosa after oral administration of escin.


Assuntos
Quitosana , Polieletrólitos/química , Quitosana/química , Escina , Sistemas de Liberação de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
8.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077006

RESUMO

The increasing incidence of patients struggling with fungal infections, along with high losses in the production of different foods/crops due to fungal diseases presents a significant burden to healthcare, agronomy, and economies worldwide [...].


Assuntos
Antifúngicos , Micoses , Antifúngicos/efeitos adversos , Produtos Agrícolas , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia
9.
Antibiotics (Basel) ; 11(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35625232

RESUMO

The control of fungal pathogens is increasingly difficult due to the limited number of effective drugs available for antifungal therapy. In addition, both humans and fungi are eukaryotic organisms; antifungal drugs may have significant toxicity due to the inhibition of related human targets. Furthermore, another problem is increased incidents of fungal resistance to azoles, such as fluconazole, ketoconazole, voriconazole, etc. Thus, the interest in developing new azoles with an extended spectrum of activity still attracts the interest of the scientific community. Herein, we report the synthesis of a series of triazolium salts, an evaluation of their antifungal activity, and docking studies. Ketoconazole and bifonazole were used as reference drugs. All compounds showed good antifungal activity with MIC/MFC in the range of 0.0003 to 0.2/0.0006-0.4 mg/mL. Compound 19 exhibited the best activity among all tested with MIC/MFC in the range of 0.009 to 0.037 mg/mL and 0.0125-0.05 mg/mL, respectively. All compounds appeared to be more potent than both reference drugs. The docking studies are in accordance with experimental results.

10.
Chem Biodivers ; 19(7): e202200326, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35621325

RESUMO

Antimicrobial and cytotoxic activities were tested for dried MeOH extracts of Hieracium calophyllum (CAL), H. coloriscapum (COL), H. pseudoschenkii (PSE), H. valdepilosum (VAL) and H. glabratum (GLA) herbs (flowering aerial parts), their 2 sesquiterpene lactones (SLs) 8-epiixerisamine A and crepiside E, and dried CH2 Cl2 extract of H. scheppigianum (SCH) herb. In microdilution test, extracts showed activity on all tested microorganisms (8 bacteria, 10 fungi). The best effect was exhibited by SCH and CAL on Salmonella Typhimurium (MIC=1.7-2.5 mg/mL MBC=3.4-5.0 mg/mL), and SCH and VAL on Candida albicans (MIC=2.5 mg/mL MFC=5.0 mg/mL). SLs showed notable effect on all tested fungi Aspergillus ochraceus, Penicillium funiculosum, C. albicans and C. krusei (MIC=0.15-0.4 mg/mL MFC=0.3-0.8 mg/mL). In MTT test, extracts inhibited growth of all tested cancer cells (HeLa, LS174 and A549), with the best effect on HeLa (IC50 =148.1 µg/mL for SCH, and 152.3-303.2 µg/mL for MeOH extracts); both SLs were active against HeLa cells (IC50 =46.2 µg/mL for crepiside E and 103.8 µg/mL for 8-epiixerisamine A). Extracts and SLs showed good safety profile on normal MRC-5 cells.


Assuntos
Anti-Infecciosos , Antineoplásicos , Asteraceae , Sesquiterpenos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Candida albicans , Células HeLa , Humanos , Lactonas/farmacologia , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia
11.
Food Sci Nutr ; 10(4): 1312-1319, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432959

RESUMO

This study was designed to explore functional food properties of edible seed oil obtained from Tamjanika seeds-autochthonous grape variety of Balkan Peninsula. In order to accomplish our goals, seed oil was isolated by Soxhlet apparatus and chemically characterized regarding fatty acids, carotenoids, tocopherols, and tocotrienols. Antimicrobial activity of the isolated oil was tested by microdilution method. For that purposes, six bacterial species were used, belonging to human infectious agents and food contaminants. Furthermore, the activity of the oil was investigated against clinical isolates of dermatomycetes. Our study has shown that oil of Vitis vinifera L. Tamjanika variety was an abundant source of polyunsaturated fatty acids (81.43%) with predominant linoleic acid. HPLC analysis revealed the presence of carotenoid lutein (0.15 mg/100 g). The seed oil was rich in tocotrienols (85.04 mg/100 g) predominating over tocopherols (8.37 mg/100 g). The oil possessed microbicidal activity against all the tested microbes. Bacteria were more sensitive to the effect of the oil (minimum inhibitory concentration [MIC] 7.7-15.4) when compared with oil effect on tested dermatomycetes (MIC 20-40). Our investigation has shown for the first time that grape oil could be active against wide spectrum of bacteria and clinically isolated dermatomycetes. The significance of this study lies in the fact that it pointed out the functional food properties of grape seed oil that was fully chemically characterized.

12.
Naturwissenschaften ; 109(2): 19, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35267095

RESUMO

Pygidial gland secretions are used as repellent defensive allomones in ground beetles. We provide the first precise data on the chemical composition and antimicrobial potency of the secretion of the blue ground beetle, as well as on the morphology of its pygidial glands. The latter structures were not previously studied chemoecologically and morphologically, and we hypothesized that their secretion may have some antimicrobial action, as is the case with certain Carabus species. Gas chromatography-mass spectrometry (GC-MS) was used to identify methacrylic and angelic acids as dominant chemicals in the secretion from individuals of three populations of the blue ground beetle in Serbia. We tested its secretion against selected strains of medically important microorganisms. The secretion exibits antimicrobial action against certain bacterial species and all tested micromycetes. The most significant antifungal effect of the secretion was against Penicillium ochrochloron, which is more sensitive to the secretion than to commercial antifungal drugs ketoconazole and bifonazole. Bifonazole achieved minimum inhibitory concentrations against Trichoderma viride at more than three times higher value than did the secretion, indicating a significant antifungal effect of the secretion against this micromycete as well. Additionally, we tested commercially available standards of two dominant chemicals in the secretion to investigate their interaction and antimicrobial role in the secretion. Finally, we describe all glandular morpho-functional units of the blue ground beetle. Our results suggest that the secretion of the blue ground beetle may serve not only defensive but also antimicrobial functions, which likely aid the survival of this beetle in the microbial-rich forest litter habitat.


Assuntos
Anti-Infecciosos , Besouros , Animais , Anti-Infecciosos/farmacologia , Bactérias , Secreções Corporais/química , Besouros/química , Testes de Sensibilidade Microbiana
13.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269898

RESUMO

Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.


Assuntos
Antifúngicos , Micoses , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Parede Celular/metabolismo , Farmacorresistência Fúngica , Humanos , Hifas , Micoses/microbiologia
14.
Food Chem ; 374: 131754, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34891087

RESUMO

This study aimed to determine a complete chemical composition of eight different varieties of whole hemp seeds and eight samples of commercial dehulled hemp seeds. We also evaluated the phenolic profiles and antioxidant, cytotoxic, and antimicrobial properties of hydromethanolic seed extracts. Whole hemp seeds contain much more fibre than dehulled hemp seeds, which contain more fat and protein. Sucrose and raffinose were the most abundant soluble sugars, and citric and oxalic acids were the most abundant organic acids. In the hydromethanolic hemp seed extracts, we detected the phenolic acids ferulic acid-hexoside and syringic acid. Whole hemp seed extracts exhibited better antioxidant activity than dehulled hemp seed extracts, especially in the TBARS assay. Cytotoxic activity against NCI-H460 cells was also observed. The dehulled hemp seed extracts displayed antibacterial activity, especially against Bacillus cereus, Listeria monocytogenes, and Enterococcus faecalis, and antifungal activity to a lesser extent.


Assuntos
Cannabis , Extratos Vegetais/farmacologia , Sementes/química , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Cannabis/química , Linhagem Celular Tumoral , Humanos , Fenóis , Compostos Fitoquímicos/farmacologia
15.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36678518

RESUMO

This study was designed to investigate the impact of different extraction solvent systems on the chemical composition and biological activities of Allium scorodoprasum L. (Amaryllidaceae)-the medicinal plant that was traditionally used as a remedy in the medieval period in the Balkans. Targeted chemical analysis of nine different extracts was performed by UHPLC(-)HESI-QqQ-MS/MS. Antimicrobial and antibiofilm activities of the extracts were investigated on sixteen clinical isolates of bacteria, yeasts and dermatomycetes, all isolated from infected human skin and corneal formations. Cytotoxicity and wound-healing properties were tested on human immortalized keratinocytes (HaCaT cell line). Antioxidant activity was assessed by six different assays, while beneficial potential against certain neurodegenerative diseases and type 2 diabetes was determined in selected enzyme inhibition assays coupled with molecular modeling. The results showed that the obtained extracts were rich in phenolic compounds, especially flavonoid glycosides such as rutin and kaempferol 3-O-glucoside. All of the extracts showed antimicrobial, wound-healing, antioxidant and anti-enzymatic properties. This study is the first of its kind, linking the medieval medicinal use of wild-growing flowers of A. scorodoprasum with contemporary in vitro scientific approaches.

16.
Biology (Basel) ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34681050

RESUMO

Aloesin is an aromatic chromone with increasing applications in the cosmetic and health food industries. To optimize its extraction from the Aloe vera leaf rind, the independent variables time (10-210 min), temperature (25-95 °C) and organic solvent composition (0-100%, w/w) were combined in a central composite design coupled with response surface methodology. The solvents consisted of binary mixtures of water with ethanol, propylene glycol, or glycerol. The aloesin levels quantified in each extract were used as response for optimization. The theoretical models were fitted to the experimental data, statistically validated, and used to obtain the optimal extraction conditions. Then, a dose-response analysis of the solid/liquid ratio (S/L) was performed under the optimal conditions determined for each alcohol-water system and revealed that a linear improvement in extraction efficiency can be achieved by increasing the S/L ratio by up to 40 g/L. This analysis also allowed to experimentally validate the predictive models. Furthermore, the aloesin-rich extracts revealed antioxidant activity through thiobarbituric acid reactive substances (TBARS) formation inhibition, antimicrobial effects against bacterial and fungal strains, and no toxicity for PLP2 cells. Overall, this study provided optimal extraction conditions for the recovery of aloesin from Aloe vera rind through an eco-friendly extraction process and highlighted its bioactive potential.

17.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577641

RESUMO

Chicory (Cichorium intybus L.) is an important industrial crop cultivated mainly to extract the dietary fiber inulin. However, chicory also contains bioactive compounds such as sesquiterpene lactones and certain polyphenols, which are currently discarded as waste. Plants are an important source of active pharmaceutical ingredients, including novel antimicrobials that are urgently needed due to the global spread of drug-resistant bacteria and fungi. Here, we tested different extracts of chicory for a range of bioactivities, including antimicrobial, antifungal and cytotoxicity assays. Antibacterial and antifungal activities were generally more potent in ethyl acetate extracts compared to water extracts, whereas supercritical fluid extracts showed the broadest range of bioactivities in our assays. Remarkably, the chicory supercritical fluid extract and a purified fraction thereof inhibited both methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Pseudomonas aeruginosa IBRS P001. Chicory extracts also showed higher antibiofilm activity against the yeast Candida albicans than standard sesquiterpene lactone compounds. The cytotoxicity of the extracts was generally low. Our results may thus lead to the development of novel antibacterial and antifungal preparations that are both effective and safe for human use.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34501651

RESUMO

Flowers of the genus Impatiens are classified as edible; however, their inclusion in the human diet is not yet a common practice. Its attractive colours have stirred great interest by the food industry. In this sense, rose (BP) and orange (BO) I. balsamina flowers were nutritionally studied, followed by an in-depth chemical study profile. The non-anthocyanin and anthocyanin profiles of extracts of both flower varieties were also determined by high-performance liquid chromatography coupled to a diode array and mass spectrometry detector (HPLC-DAD-ESI/MS). The results demonstrated that both varieties presented significant amounts of phenolic compounds, having identified nine non-anthocyanin compounds and 14 anthocyanin compounds. BP extract stood out in its bioactive properties (antioxidant and antimicrobial potential) and was selected for incorporation in "bombocas" filling. Its performance as a colouring ingredient was compared with the control formulations (white filling) and with E163 (anthocyanins) colorant. The incorporation of the natural ingredient did not cause changes in the chemical and nutritional composition of the product; and although the colour conferred was lighter than presented by the formulation with E163 (suggesting a more natural aspect), the higher antioxidant activity could meet the expectations of the current high-demand consumer.


Assuntos
Antocianinas , Corantes de Alimentos/análise , Impatiens , Extratos Vegetais/análise , Antocianinas/análise , Antioxidantes , Cromatografia Líquida de Alta Pressão , Flores
19.
Plants (Basel) ; 10(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34579445

RESUMO

Seed treatments with zinc, boron, biostimulant Coveron and MIX (zinc + boron + Coveron) were applied to three lettuce and three celeriac cultivars. Seeds of three wheat cultivars were treated under laboratory conditions with Trichoderma harzianum and eight Bacillus spp. Seed germination, seedling growth, and the presence of the following pathogens were determined: Fusarium sp., Alternaria sp., Penicillium sp., and Mucor sp. The Coveron treatment was the most effective on lettuce seeds tested in the germination cabinet. Seed germination was higher by 4% than in the control. Alternatively, germination of seeds treated with boron in the greenhouse was higher by 12% than in the control. The Coveron treatment had the highest effect on the shoot length, which was greater by 0.7 and 2.1 cm in the germination cabinet and the greenhouse, respectively. This treatment was also the most effective on the root length. Zn, B, and MIX treatments increased celeriac seed germination by 14% in the germination cabinet. The Zn treatment was the most efficient on seeds tested in the greenhouse. The germination was higher by 15%. A significant cultivar × treatment interaction was determined in both observed species under both conditions. The maximum effect on wheat seed germination (8%) was achieved with the T. harzianum treatment in the Salazar cultivar. A significant interdependence (p ≤ 0.01 to p ≤ 0.001) was established between seed germination and the seedling growth. The interrelationship between seed germination and pathogens of all cultivars was negative.

20.
Antibiotics (Basel) ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356726

RESUMO

The goal of this research is to investigate the antimicrobial activity of nineteen previously synthesized 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. The compounds were tested against a panel of three Gram-positive and three Gram-negative bacteria, three resistant strains, and six fungi. Minimal inhibitory, bactericidal, and fungicidal concentrations were determined by a microdilution method. All of the compounds showed antibacterial activity that was more potent than both reference drugs, ampicillin and streptomycin, against all bacteria tested. Similarly, they were also more active against resistant bacterial strains. The antifungal activity of the compounds was up to 80-fold higher than ketoconazole and from 3 to 40 times higher than bifonazole, both of which were used as reference drugs. The most active compounds (2, 3, 6, 7, and 19) were tested for their inhibition of P. aeruginosa biofilm formation. Among them, compound 3 showed significantly higher antibiofilm activity and appeared to be equipotent with ampicillin. The prediction of the probable mechanism by docking on antibacterial targets revealed that E. coli MurB is the most suitable enzyme, while docking studies on antifungal targets indicated a probable involvement of CYP51 in the mechanism of antifungal activity. Finally, the toxicity testing in human cells confirmed their low toxicity both in cancerous cell line MCF7 and non-cancerous cell line HK-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...