Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(4): e202200602, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454659

RESUMO

BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Temperatura , Peptídeos/química , Membrana Celular/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética
2.
Biochim Biophys Acta ; 1838(3): 940-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24216062

RESUMO

BP100 is a multifunctional membrane-active peptide of only 11 amino acids, with a high antimicrobial activity, an efficient cell-penetrating ability, and low hemolytic side-effects. It forms an amphiphilic α-helix, similar to other antimicrobial peptides like magainin. However, BP100 is very short and thus unlikely to form membrane-spanning pores as proposed for longer peptides as a mechanism of action. We thus studied the conformation, membrane alignment and dynamical behavior of BP100 in lipid bilayers (DMPC/DMPG), using oriented circular dichroism (OCD) and solid-state (19)F and (15)N NMR. According to OCD and (15)N NMR, the BP100 helix is oriented roughly parallel to the membrane surface, but these methods yield no information on the azimuthal alignment angle or the dynamics of the molecule. To address these questions, a systematic (19)F NMR analysis was performed, which was not straightforward for this short peptide. Only a limited number of positions could be (19)F-labeled, all of which are located on one face of the helix, which was found to lead to artifacts in the data analysis. It was nevertheless possible to reconcile the (19)F NMR data with the OCD and (15)N NMR data by using an advanced dynamical model, in which peptide mobility is described by fluctuating tilt and azimuthal angles with Gaussian distributions. (19)F NMR thus confirmed the regular α-helical conformation of BP100, revealed its azimuthal angle, and described its high mobility in the membrane. Furthermore, the very sensitive (19)F NMR experiments showed that the alignment of BP100 does not vary with peptide concentration over a peptide-to-lipid molar ratio from 1:10 to 1:3000.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Oligopeptídeos/química , Membrana Celular/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA