Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Biomed Pharmacother ; 173: 116345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442670

RESUMO

Antagonists of the A2B adenosine receptor have recently emerged as targeted anticancer agents and immune checkpoint inhibitors within the realm of cancer immunotherapy. This study presents a comprehensive evaluation of novel Biginelli-assembled pyrimidine chemotypes, including mono-, bi-, and tricyclic derivatives, as A2BAR antagonists. We conducted a comprehensive examination of the adenosinergic profile (both binding and functional) of a large compound library consisting of 168 compounds. This approach unveiled original lead compounds and enabled the identification of novel structure-activity relationship (SAR) trends, which were supported by extensive computational studies, including quantum mechanical calculations and free energy perturbation (FEP) analysis. In total, 25 molecules showed attractive affinity (Ki < 100 nM) and outstanding selectivity for A2BAR. From these, five molecules corresponding to the new benzothiazole scaffold were below the Ki < 10 nM threshold, in addition to a novel dual A2A/A2B antagonist. The most potent compounds, and the dual antagonist, showed enantiospecific recognition in the A2BAR. Two A2BAR selective antagonists and the dual A2AAR/A2BAR antagonist reported in this study were assessed for their impact on colorectal cancer cell lines. The results revealed a significant and dose-dependent reduction in cell proliferation. Notably, the A2BAR antagonists exhibited remarkable specificity, as they did not impede the proliferation of non-tumoral cell lines. These findings support the efficacy and potential that A2BAR antagonists as valuable candidates for cancer therapy, but also that they can effectively complement strategies involving A2AAR antagonism in the context of immune checkpoint inhibition.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Antagonistas de Receptores Purinérgicos P1 , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico
2.
Acta Neuropsychiatr ; : 1-5, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37605951

RESUMO

OBJECTIVES: Cannabidiol (CBD) is a phytocannabinoid with great potential in clinical applications. The mechanism(s) of action of CBD require further investigation. Previous studies suggested that adenosine A2A receptors (A2ARs) could play a role in CBD-induced effects. Here, we evaluated the ability of CBD to modify the function of A2AR. METHODS: We used HEK-293T cells transfected with the cDNA encoding the human A2AR and Gαs protein, both modified to perform bioluminescence-based assays. We first assessed the effect of CBD on A2AR ligand binding using an A2AR NanoLuciferase sensor. Next, we evaluated whether CBD modified A2AR coupling to mini-Gαs proteins using the NanoBiT™ assay. Finally, we further assessed CBD effects on A2AR intrinsic activity by recording agonist-induced cAMP accumulation. RESULTS: CBD did not bind orthosterically to A2AR but reduced the coupling of A2AR to Gαs protein and the subsequent generation of cAMP. CONCLUSION: CBD negatively modulates A2AR functioning.

3.
Curr Protoc ; 3(6): e794, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289022

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors and the main drug targets in therapeutics. GPCRs can establish direct receptor-receptor interactions (oligomerization), which can also be considered as targets for drug development (GPCR oligomer-based drugs). However, prior to designing any novel GPCR oligomer-based drug development program, demonstrating the existence of a named GPCR oligomer in native tissues is needed as part of its target engagement definition. Here, we discuss the proximity ligation in situ assay (P-LISA), an experimental approach that reveals GPCR oligomerization in native tissues. We provide a detailed step-by-step protocol to perform P-LISA experiments and visualize GPCR oligomers in brain slices. We also provide instructions for slide observation, data acquisition, and quantification. Finally, we discuss the critical aspects determining the success of the technique, namely the fixation process and the validation of the primary antibodies used. Overall, this protocol may be used to straightforwardly visualize GPCR oligomers in the brain. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Visualization of GPCR oligomers by proximity ligation in situ assay (P-LISA) Support Protocol: Slide observation, image acquisition, and quantification.


Assuntos
Encéfalo , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Ligação Proteica , Proteínas de Transporte/metabolismo , Transporte Proteico
4.
Front Pharmacol ; 14: 1200187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261289
5.
Trends Pharmacol Sci ; 44(8): 495-506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331914

RESUMO

It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).


Assuntos
Canabinoides , Humanos , Animais , Canabinoides/farmacologia , Receptores de Canabinoides , Recompensa , Neurônios Dopaminérgicos , Receptor CB1 de Canabinoide
6.
Curr Issues Mol Biol ; 45(6): 4948-4969, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367064

RESUMO

Adenosine plays an important role in modulating immune cell function, particularly T cells and myeloid cells, such as macrophages and dendritic cells. Cell surface adenosine A2A receptors (A2AR) regulate the production of pro-inflammatory cytokines and chemokines, as well as the proliferation, differentiation, and migration of immune cells. In the present study, we expanded the A2AR interactome and provided evidence for the interaction between the receptor and the Niemann-Pick type C intracellular cholesterol transporter 1 (NPC1) protein. The NPC1 protein was identified to interact with the C-terminal tail of A2AR in RAW 264.7 and IPMФ cells by two independent and parallel proteomic approaches. The interaction between the NPC1 protein and the full-length A2AR was further validated in HEK-293 cells that permanently express the receptor and RAW264.7 cells that endogenously express A2AR. A2AR activation reduces the expression of NPC1 mRNA and protein density in LPS-activated mouse IPMФ cells. Additionally, stimulation of A2AR negatively regulates the cell surface expression of NPC1 in LPS-stimulated macrophages. Furthermore, stimulation of A2AR also altered the density of lysosome-associated membrane protein 2 (LAMP2) and early endosome antigen 1 (EEA1), two endosomal markers associated with the NPC1 protein. Collectively, these results suggested a putative A2AR-mediated regulation of NPC1 protein function in macrophages, potentially relevant for the Niemann-Pick type C disease when mutations in NPC1 protein result in the accumulation of cholesterol and other lipids in lysosomes.

7.
ACS Chem Neurosci ; 14(11): 2201-2207, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191585

RESUMO

The σ1 receptor (S1R) is a ligand-regulated non-opioid intracellular receptor involved in several pathological conditions. The development of S1R-based drugs as therapeutic agents is a challenge due to the lack of simple functional assays to identify and classify S1R ligands. We have developed a novel nanoluciferase binary technology (NanoBiT) assay based on the ability of S1R to heteromerize with the binding immunoglobulin protein (BiP) in living cells. The S1R-BiP heterodimerization biosensor allows for rapid and accurate identification of S1R ligands by monitoring the dynamics of association-dissociation of S1R and BiP. Acute treatment of cells with the S1R agonist PRE-084 produced rapid and transient dissociation of the S1R-BiP heterodimer, which was blocked by haloperidol. The effect of PRE-084 was enhanced by calcium depletion, leading to a higher reduction in heterodimerization even in the presence of haloperidol. Prolonged incubation of cells with S1R antagonists (haloperidol, NE-100, BD-1047, and PD-144418) increased the formation of S1R-BiP heteromers, while agonists (PRE-084, 4-IBP, and pentazocine) did not alter heterodimerization under the same experimental conditions. The newly developed S1R-BiP biosensor is a simple and effective tool for exploring S1R pharmacology in an easy cellular setting. This biosensor is suitable for high-throughput applications and a valuable resource in the researcher's toolkit.


Assuntos
Haloperidol , Receptores sigma , Haloperidol/farmacologia , Proteínas de Transporte/metabolismo , Ligantes , Dimerização , Receptores sigma/metabolismo
9.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901835

RESUMO

Increased adenosine A2A receptor (A2AR) expression and activation underlies a higher incidence of spontaneous calcium release in atrial fibrillation (AF). Adenosine A3 receptors (A3R) could counteract excessive A2AR activation, but their functional role in the atrium remains elusive, and we therefore aimed to address the impact of A3Rs on intracellular calcium homeostasis. For this purpose, we analyzed right atrial samples or myocytes from 53 patients without AF, using quantitative PCR, patch-clamp technique, immunofluorescent labeling or confocal calcium imaging. A3R mRNA accounted for 9% and A2AR mRNA for 32%. At baseline, A3R inhibition increased the transient inward current (ITI) frequency from 0.28 to 0.81 events/min (p < 0.05). Simultaneous stimulation of A2ARs and A3Rs increased the calcium spark frequency seven-fold (p < 0.001) and the ITI frequency from 0.14 to 0.64 events/min (p < 0.05). Subsequent A3R inhibition caused a strong additional increase in the ITI frequency (to 2.04 events/min; p < 0.01) and increased phosphorylation at s2808 1.7-fold (p < 0.001). These pharmacological treatments had no significant effects on L-type calcium current density or sarcoplasmic reticulum calcium load. In conclusion, A3Rs are expressed and blunt spontaneous calcium release at baseline and upon A2AR-stimulation in human atrial myocytes, pointing to A3R activation as a means to attenuate physiological and pathological elevations of spontaneous calcium release events.


Assuntos
Fibrilação Atrial , Receptores Purinérgicos P1 , Humanos , Adenosina/metabolismo , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Homeostase , Miócitos Cardíacos/metabolismo , Receptores Purinérgicos P1/metabolismo , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/metabolismo
10.
JACC Basic Transl Sci ; 8(1): 1-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36777175

RESUMO

Analysis of the spatio-temporal distribution of calcium sparks showed a preferential increase in sparks near the sarcolemma in atrial myocytes from patients with atrial fibrillation (AF), linked to higher ryanodine receptor (RyR2) phosphorylation at s2808 and lower calsequestrin-2 levels. Mathematical modeling, incorporating modulation of RyR2 gating, showed that only the observed combinations of RyR2 phosphorylation and calsequestrin-2 levels can account for the spatio-temporal distribution of sparks in patients with and without AF. Furthermore, we demonstrate that preferential calcium release near the sarcolemma is key to a higher incidence and amplitude of afterdepolarizations in atrial myocytes from patients with AF.

11.
Front Pharmacol ; 14: 1087171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778010

RESUMO

The dopamine D4 receptor (D4R) is expressed in the retina, prefrontal cortex, and autonomic nervous system and has been implicated in attention deficit hyperactivity disorder (ADHD), substance use disorders, and erectile dysfunction. D4R has also been investigated as a target for antipsychotics due to its high affinity for clozapine. As opposed to the closely related dopamine D2 receptor (D2R), dopamine-induced arrestin recruitment and desensitization at the D4R have not been studied in detail. Indeed, some earlier investigations could not detect arrestin recruitment and desensitization of this receptor upon its activation by agonist. Here, we used a novel nanoluciferase complementation assay to study dopamine-induced recruitment of ß-arrestin2 (ßarr2; also known as arrestin3) and G protein-coupled receptor kinase-2 (GRK2) to the D4R in HEK293T cells. We also studied desensitization of D4R-evoked G protein-coupled inward rectifier potassium (GIRK; also known as Kir3) current responses in Xenopus oocytes. Furthermore, the effect of coexpression of GRK2 on ßarr2 recruitment and GIRK response desensitization was examined. The results suggest that coexpression of GRK2 enhanced the potency of dopamine to induce ßarr2 recruitment to the D4R and accelerated the rate of desensitization of D4R-evoked GIRK responses. The present study reveals new details about the regulation of arrestin recruitment to the D4R and thus increases our understanding of the signaling and desensitization of this receptor.

12.
Biomed Pharmacother ; 160: 114327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736280

RESUMO

The striatal dopamine D2 receptor (D2R) is generally accepted to be involved in positive symptoms of schizophrenia and is a main target for clinically used antipsychotics. D2R are highly expressed in the striatum, where they form heteromers with the adenosine A2A receptor (A2AR). Changes in the density of A2AR-D2R heteromers have been reported in postmortem tissue from patients with schizophrenia, but the degree to which A2R are involved in schizophrenia and the effect of antipsychotic drugs is unknown. Here, we examine the effect of exposure to three prototypical antipsychotic drugs on A2AR-D2R heteromerization in mammalian cells using a NanoBiT assay. After 16 h of exposure, a significant increase in the density of A2AR-D2R heteromers was found with haloperidol and aripiprazole, but not with clozapine. On the other hand, clozapine, but not haloperidol or aripiprazole, was associated with a significant decrease in A2AR-D2R heteromerization after 2 h of treatment. Computational binding models of these compounds revealed distinctive molecular signatures that explain their different influence on heteromerization. The bulky tricyclic moiety of clozapine displaces TM 5 of D2R, inducing a clash with A2AR, while the extended binding mode of haloperidol and aripiprazole stabilizes a specific conformation of the second extracellular loop of D2R that enhances the interaction with A2AR. It is proposed that an increase in A2AR-D2R heteromerization is involved in the extrapyramidal side effects (EPS) of antipsychotics and that the specific clozapine-mediated destabilization of A2AR-D2R heteromerization can explain its low EPS liability.


Assuntos
Antipsicóticos , Clozapina , Animais , Humanos , Dopamina , Clozapina/farmacologia , Antipsicóticos/farmacologia , Receptores de Dopamina D2/metabolismo , Aripiprazol , Adenosina/farmacologia , Mamíferos
13.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835078

RESUMO

Adenosine, an endogenous nucleoside, plays a critical role in maintaining homeostasis during stressful situations, such as energy deprivation or cellular damage. Therefore, extracellular adenosine is generated locally in tissues under conditions such as hypoxia, ischemia, or inflammation. In fact, plasma levels of adenosine in patients with atrial fibrillation (AF) are elevated, which also correlates with an increased density of adenosine A2A receptors (A2ARs) both in the right atrium and in peripheral blood mononuclear cells (PBMCs). The complexity of adenosine-mediated effects in health and disease requires simple and reproducible experimental models of AF. Here, we generate two AF models, namely the cardiomyocyte cell line HL-1 submitted to Anemonia toxin II (ATX-II) and a large animal model of AF, the right atrium tachypaced pig (A-TP). We evaluated the density of endogenous A2AR in those AF models. Treatment of HL-1 cells with ATX-II reduced cell viability, while the density of A2AR increased significantly, as previously observed in cardiomyocytes with AF. Next, we generated the animal model of AF based on tachypacing pigs. In particular, the density of the key calcium regulatory protein calsequestrin-2 was reduced in A-TP animals, which is consistent with the atrial remodelling shown in humans suffering from AF. Likewise, the density of A2AR in the atrium of the AF pig model increased significantly, as also shown in the biopsies of the right atrium of subjects with AF. Overall, our findings revealed that these two experimental models of AF mimicked the alterations in A2AR density observed in patients with AF, making them attractive models for studying the adenosinergic system in AF.


Assuntos
Fibrilação Atrial , Receptor A2A de Adenosina , Animais , Humanos , Adenosina/metabolismo , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Leucócitos Mononucleares/metabolismo , Miócitos Cardíacos/metabolismo , Receptor A2A de Adenosina/metabolismo , Suínos
14.
Biomed Pharmacother ; 158: 114169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592495

RESUMO

AIMS: Atrial fibrillation (AF) has been associated with excessive spontaneous calcium release, linked to cyclic AMP (cAMP)-dependent phosphorylation of calcium regulatory proteins. Because ß-blockers are expected to attenuate cAMP-dependent signaling, we aimed to examine whether the treatment of patients with ß-blockers affected the incidence of spontaneous calcium release events or transient inward currents (ITI). METHODS: The impact of treatment with commonly used ß-blockers was analyzed in human atrial myocytes from 371 patients using patch-clamp technique, confocal calcium imaging or immunofluorescent labeling. Data were analyzed using multivariate regression analysis taking into account potentially confounding effects of relevant clinical factors RESULTS: The L-type calcium current (ICa) density was diminished significantly in patients with chronic but not paroxysmal AF and the treatment of patients with ß-blockers did not affect ICa density in any group. By contrast, the ITI frequency was elevated in patients with either paroxysmal or chronic AF that did not receive treatment, and ß-blocker treatment reduced the frequency to levels observed in patients without AF. Confocal calcium imaging showed that ß-blocker treatment also reduced the calcium spark frequency in patients with AF to levels observed in those without AF. Furthermore, phosphorylation of the ryanodine receptor (RyR2) at Ser-2808 and phospholamban at Ser-16 was significantly lower in patients with AF that received ß-blockers. CONCLUSION: Together, our findings demonstrate that ß-blocker treatment may be of therapeutic utility to prevent spontaneous calcium release-induced atrial electrical activity; especially in patients with a history of paroxysmal AF displaying preserved ICa density.


Assuntos
Antagonistas Adrenérgicos beta , Fibrilação Atrial , Cálcio , Humanos , Potenciais de Ação , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Antagonistas Adrenérgicos beta/farmacologia
15.
J Med Chem ; 66(1): 890-912, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517209

RESUMO

The modulation of the A2B adenosine receptor is a promising strategy in cancer (immuno) therapy, with A2BAR antagonists emerging as immune checkpoint inhibitors. Herein, we report a systematic assessment of the impact of (di- and mono-)halogenation at positions 7 and/or 8 on both A2BAR affinity and pharmacokinetic properties of a collection of A2BAR antagonists and its study with structure-based free energy perturbation simulations. Monohalogenation at position 8 produced potent A2BAR ligands irrespective of the nature of the halogen. In contrast, halogenation at position 7 and dihalogenation produced a halogen-size-dependent decay in affinity. Eight novel A2BAR ligands exhibited remarkable affinity (Ki < 10 nM), exquisite subtype selectivity, and enantioselective recognition, with some eutomers eliciting sub-nanomolar affinity. The pharmacokinetic profile of representative derivatives showed enhanced solubility and microsomal stability. Finally, two compounds showed the capacity of reversing the antiproliferative effect of adenosine in activated primary human peripheral blood mononuclear cells.


Assuntos
Halogenação , Antagonistas de Receptores Purinérgicos P1 , Cricetinae , Animais , Humanos , Células CHO , Leucócitos Mononucleares/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Receptor A2B de Adenosina/metabolismo , Ligantes , Halogênios
16.
Neuropharmacology ; 223: 109329, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375695

RESUMO

Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A1 and A2A receptors (A1Rs and A2ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. A1Rs and A2ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form A1R-A2AR and A2AR-cannabinoid CB1 receptor (CB1R) heteromers. We then evaluate recent findings on the unique properties of A1R-A2AR and A2AR-CB1R heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the A2AR to demonstrate constitutive activity in the different heteromers, and the ability of some A2AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific A2AR heteromer.


Assuntos
Ácido Glutâmico , Receptor A2A de Adenosina , Receptor A2A de Adenosina/metabolismo , Corpo Estriado/metabolismo , Receptores de Canabinoides , Adenosina , Colinérgicos
17.
Br J Pharmacol ; 180(7): 958-974, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34363210

RESUMO

BACKGROUND AND PURPOSE: Opioid-based drugs are the gold standard medicines for pain relief. However, tolerance and several side effects (i.e. constipation and dependence) may occur upon chronic opioid administration. Photopharmacology is a promising approach to improve the benefit/risk profiles of these drugs. Thus, opioids can be locally activated with high spatiotemporal resolution, potentially minimizing systemic-mediated adverse effects. Here, we aimed at developing a morphine photo-derivative (photocaged morphine), which can be activated upon light irradiation both in vitro and in vivo. EXPERIMENTAL APPROACH: Light-dependent activity of pc-morphine was assessed in cell-based assays (intracellular calcium accumulation and electrophysiology) and in mice (formalin animal model of pain). In addition, tolerance, constipation and dependence were investigated in vivo using experimental paradigms. KEY RESULTS: In mice, pc-morphine was able to elicit antinociceptive effects, both using external light-irradiation (hind paw) and spinal cord implanted fibre-optics. In addition, remote morphine photoactivation was devoid of common systemic opioid-related undesired effects, namely, constipation, tolerance to the analgesic effects, rewarding effects and naloxone-induced withdrawal. CONCLUSION AND IMPLICATIONS: Light-dependent opioid-based drugs may allow effective analgesia without the occurrence of tolerance or the associated and severe opioid-related undesired effects. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Analgesia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Camundongos , Animais , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Dor/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico
19.
Front Endocrinol (Lausanne) ; 13: 1014678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267569

RESUMO

The functional and pharmacological significance of the dopamine D4 receptor (D4R) has remained the least well understood of all the dopamine receptor subtypes. Even more enigmatic has been the role of the very prevalent human DRD4 gene polymorphisms in the region that encodes the third intracellular loop of the receptor. The most common polymorphisms encode a D4R with 4 or 7 repeats of a proline-rich sequence of 16 amino acids (D4.4R and D4.7R). DRD4 polymorphisms have been associated with individual differences linked to impulse control-related neuropsychiatric disorders, with the most consistent associations established between the gene encoding D4.7R and attention-deficit hyperactivity disorder (ADHD) and substance use disorders. The function of D4R and its polymorphic variants is being revealed by addressing the role of receptor heteromerization and the relatively avidity of norepinephrine for D4R. We review the evidence conveying a significant and differential role of D4.4R and D4.7R in the dopaminergic and noradrenergic modulation of the frontal cortico-striatal pyramidal neuron, with implications for the moderation of constructs of impulsivity as personality traits. This differential role depends on their ability to confer different properties to adrenergic α2A receptor (α2AR)-D4R heteromers and dopamine D2 receptor (D2R)-D4R heteromers, preferentially localized in the perisomatic region of the frontal cortical pyramidal neuron and its striatal terminals, respectively. We also review the evidence to support the D4R as a therapeutic target for ADHD and other impulse-control disorders, as well as for restless legs syndrome.


Assuntos
Dopamina , Receptores de Dopamina D4 , Humanos , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Norepinefrina , Adrenérgicos , Aminoácidos , Prolina
20.
Biomed Pharmacother ; 156: 113896, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279718

RESUMO

Adenosine modulates neurotransmission through inhibitory adenosine A1 receptors (A1Rs) and stimulatory A2A receptors (A2ARs). These G protein-coupled receptors are involved in motor function and related to neurodegenerative diseases such as Parkinson's disease (PD). An autosomal-recessive mutation (G2797.44S) within the transmembrane helix (TM) 7 of A1R (A1RG279S) has been associated with the development of early onset PD (EOPD). Here, we aimed at investigating the impact of this mutation on the structure and function of the A1R and the A1R-A2AR heteromer. Our results revealed that the G2797.44S mutation does not alter A1R expression, ligand binding, constitutive activity or coupling to transducer proteins (Gαi, Gαq, Gα12/13, Gαs, ß-arrestin2 and GRK2) in transfected HEK-293 T cells. However, A1RG279S weakened the ability of A1R to heteromerize with A2AR, as shown in a NanoBiT assay, which led to the disappearance of the heteromerization-dependent negative allosteric modulation that A1R imposes on the constitutive activity and agonist-induced activation of the A2AR. Molecular dynamic simulations allowed to propose an indirect mechanism by which the G2797.44S mutation in TM 7 of A1R weakens the TM 5/6 interface of the A1R-A2AR heteromer. Therefore, it is demonstrated that a PD linked ADORA1 mutation is associated with dysfunction of adenosine receptor heteromerization. We postulate that a hyperglutamatergic state secondary to increased constitutive activity and sensitivity to adenosine of A2AR not forming heteromers with A1R could represent a main pathogenetic mechanism of the EOPD associated with the G2797.44S ADORA1 mutation.


Assuntos
Adenosina , Doença de Parkinson , Humanos , Adenosina/farmacologia , Células HEK293 , Mutação/genética , Doença de Parkinson/genética , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...