Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631258

RESUMO

Plant and herbal essential oils (EOs) offer a wide range of pharmacological actions that include anticancer effects. Here, we evaluated the cytotoxic activity of EO from Lippia alba (chemotype linalool), L. alba (chemotype dihydrocarvone, LaDEO), Clinopodium nepeta (L.) Kuntze (CnEO), Eucalyptus globulus, Origanum × paniculatum, Mentha × piperita, Mentha arvensis L., and Rosmarinus officinalis L. against human lung (A549) and colon (HCT-116) cancer cells. The cells were treated with increasing EO concentrations (0-500 µL/L) for 24 h, and cytotoxic activity was assessed. LaDEO and CnEO were the most potent EOs evaluated (IC50 range, 145-275 µL/L). The gas chromatography-mass spectrometry method was used to determine their composition. Considering EO limitations as therapeutic agents (poor water solubility, volatilization, and oxidation), we evaluated whether LaDEO and CnEO encapsulation into solid lipid nanoparticles (SLN/EO) enhanced their anticancer activity. Highly stable spherical SLN/LaDEO and SLN/CnEO SLN/EO were obtained, with a mean diameter of 140-150 nm, narrow size dispersion, and Z potential around -5mV. EO encapsulation strongly increased their anticancer activity, particularly in A549 cells exposed to SLN/CnEO (IC50 = 66 µL/L CnEO). The physicochemical characterization, biosafety, and anticancer mechanisms of SLN/CnEO were also evaluated in A549 cells. SLN/CnEO containing 97 ± 1% CnEO was highly stable for up to 6 months. An increased in vitro CnEO release from SLN at an acidic pH (endolysosomal compartment) was observed. SLN/CnEO proved to be safe against blood components and non-toxic for normal WI-38 cells at therapeutic concentrations. SLN/CnEO substantially enhanced A549 cell death and cell migration inhibition compared with free CnEO.

2.
Front Chem ; 10: 908386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059881

RESUMO

Pharmacological treatments of central nervous system diseases are always challenging due to the restrictions imposed by the blood-brain barrier: while some drugs can effectively cross it, many others, some antiepileptic drugs among them, display permeability issues to reach the site of action and exert their pharmacological effects. The development of last-generation therapeutic nanosystems capable of enhancing drug biodistribution has gained ground in the past few years. Lipid-based nanoparticles are promising systems aimed to improve or facilitate the passage of drugs through biological barriers, which have demonstrated their effectiveness in various therapeutic fields, without signs of associated toxicity. In the present work, nanostructured lipid carriers (NLCs) containing the antiepileptic drug phenobarbital were designed and optimized by a quality by design approach (QbD). The optimized formulation was characterized by its entrapment efficiency, particle size, polydispersity index, and Z potential. Thermal properties were analyzed by DSC and TGA, and morphology and crystal properties were analyzed by AFM, TEM, and XRD. Drug localization and possible interactions between the drug and the formulation components were evaluated using FTIR. In vitro release kinetic, cytotoxicity on non-tumoral mouse fibroblasts L929, and in vivo anticonvulsant activity in an animal model of acute seizures were studied as well. The optimized formulation resulted in spherical particles with a mean size of ca. 178 nm and 98.2% of entrapment efficiency, physically stable for more than a month. Results obtained from the physicochemical and in vitro release characterization suggested that the drug was incorporated into the lipid matrix losing its crystalline structure after the synthesis process and was then released following a slower kinetic in comparison with the conventional immediate-release formulation. The NLC was non-toxic against the selected cell line and capable of delivering the drug to the site of action in an adequate amount and time for therapeutic effects, with no appreciable neurotoxicity. Therefore, the developed system represents a promising alternative for the treatment of one of the most prevalent neurological diseases, epilepsy.

3.
Int J Biol Macromol ; 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32360201

RESUMO

Protease inhibitors (PIs) have been traditionally recognized by their potential biomedical application in events with exacerbation of endogenous proteases activity. Plant PIs have gained interest as naturally occurring molecules, which usually show lower environmental impact residual toxicity than synthetic compounds. In this work, we isolated, cloned, expressed and purified a novel trypsin inhibitor from S. tuberosum subsp. andigenum var. overa, named oPTI. A significant over-expression of the oPTI coding gene after 48 h exposure of methyl jasmonate compared to the gene of reference. This inhibitor showed a molecular mass of 12 kDa and a Ki of 7.3 × 10-7 M. Finally, we evaluated the antimicrobial activity of oPTI against different pathogenic microorganisms. The oPTI demonstrated inhibitory effect on the growth of Acinetobacter baumannii S-1, Acinetobacter baumannii R, Acinetobacter calcoaceticus R, Acinetobacter calcoaceticus S, Bacillus stearothermophilus, Escherichia coli, Pseudomonas aeruginosa, Salmonella braenderup, Salmonella enteritidis, Salmonella typhimurium and Yersinia enterocolitica strains. This study represents the first report for the antimicrobial activity of a plant PI over a wide range of microorganisms. Our studies reinforce the importance of natural PIs as promising molecules for their potential application in the biomedical field and/or in the food industry as natural food preservatives.

4.
Front Chem ; 8: 605307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490037

RESUMO

The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.

5.
ACS Infect Dis ; 5(11): 1813-1819, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31538468

RESUMO

trans-Sialidase and cruzipain are important virulence factors from Trypanosoma cruzi, the etiological agent of Chagas disease, that have highly antigenic domains in their structure and were reported as potential tools for diagnosis of the illness. The aim of the present study is to assess the possibility of using cruzipain and the catalytic domain of trans-sialidase in a Surface Plasmon Resonance-based immunosensor for the diagnosis of chronic Chagas disease. Immunoassays carried out with canine sera verified that cruzipain allows the detection of anti-Trypanosoma cruzi antibodies whereas recombinant trans-sialidase did not yield specific detections, due to the high dilutions of serum used in the immunoassays that hinder the possibility to sense the specific low titer antibodies. The developed cruzipain-based biosensor, whose price per assay is comparable to a commercial enzyme-linked immunosorbent assay (ELISA), was successfully applied for the rapid quantification of specific antibodies against Trypanosoma cruzi in fresh human sera showing an excellent agreement with ELISA.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/diagnóstico , Doença de Chagas/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Trypanosoma cruzi/isolamento & purificação , Animais , Doença de Chagas/sangue , Doença de Chagas/parasitologia , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Doenças do Cão/sangue , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Cães , Glicoproteínas/análise , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Neuraminidase/análise , Neuraminidase/genética , Neuraminidase/imunologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Fatores de Virulência/sangue , Fatores de Virulência/genética , Fatores de Virulência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA