Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
J Transl Med ; 21(1): 725, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845764

RESUMO

BACKGROUND: Molecular Tumor Boards (MTB) operating in real-world have generated limited consensus on good practices for accrual, actionable alteration mapping, and outcome metrics. These topics are addressed herein in 124 MTB patients, all real-world accrued at progression, and lacking approved therapy options. METHODS: Actionable genomic alterations identified by tumor DNA (tDNA) and circulating tumor DNA (ctDNA) profiling were mapped by customized OncoKB criteria to reflect diagnostic/therapeutic indications as approved in Europe. Alterations were considered non-SoC when mapped at either OncoKB level 3, regardless of tDNA/ctDNA origin, or at OncoKB levels 1/2, provided they were undetectable in matched tDNA, and had not been exploited in previous therapy lines. RESULTS: Altogether, actionable alterations were detected in 54/124 (43.5%) MTB patients, but only in 39 cases (31%) were these alterations (25 from tDNA, 14 from ctDNA) actionable/unexploited, e.g. they had not resulted in the assignment of pre-MTB treatments. Interestingly, actionable and actionable/unexploited alterations both decreased (37.5% and 22.7% respectively) in a subset of 88 MTB patients profiled by tDNA-only, but increased considerably (77.7% and 66.7%) in 18 distinct patients undergoing combined tDNA/ctDNA testing, approaching the potential treatment opportunities (76.9%) in 147 treatment-naïve patients undergoing routine tDNA profiling for the first time. Non-SoC therapy was MTB-recommended to all 39 patients with actionable/unexploited alterations, but only 22 (56%) accessed the applicable drug, mainly due to clinical deterioration, lengthy drug-gathering procedures, and geographical distance from recruiting clinical trials. Partial response and stable disease were recorded in 8 and 7 of 19 evaluable patients, respectively. The time to progression (TTP) ratio (MTB-recommended treatment vs last pre-MTB treatment) exceeded the conventional Von Hoff 1.3 cut-off in 9/19 cases, high absolute TTP and Von Hoff values coinciding in 3 cases. Retrospectively, 8 patients receiving post-MTB treatment(s) as per physician's choice were noted to have a much longer overall survival from MTB accrual than 11 patients who had received no further treatment (35.09 vs 6.67 months, p = 0.006). CONCLUSIONS: MTB-recommended/non-SoC treatments are effective, including those assigned by ctDNA-only alterations. However, real-world MTBs may inadvertently recruit patients electively susceptible to diverse and/or multiple treatments.


Assuntos
Neoplasias , Estados Unidos , Humanos , National Cancer Institute (U.S.) , Estudos Retrospectivos , Mutação , Neoplasias/genética , DNA de Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biomarcadores Tumorais/genética
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498861

RESUMO

New evidence on the impact of dysregulation of the CDK4/6 pathway on breast cancer (BC) cell proliferation has led to the development of selective CDK4/6 inhibitors, which have radically changed the management of advanced BC. Despite the improved outcomes obtained by CDK4/6 inhibitors, approximately 10% of tumors show primary resistance, whereas acquired resistance appears to be an almost ubiquitous occurrence, leading to treatment failure. The identification of differentially expressed genes or genomic mutational signatures able to predict sensitivity or resistance to CDK4/6 inhibitors is critical for medical decision making and for avoiding or counteracting primary or acquired resistance against CDK4/6 inhibitors. In this review, we summarize the main mechanisms of resistance to CDK4/6 inhibitors, focusing on those associated with potentially relevant biomarkers that could predict patients' response/resistance to treatment. Recent advances in biomarker identification are discussed, including the potential use of liquid biopsy for BC management and the role of multiple microRNAs as molecular predictors of cancer cell sensitivity and resistance to CDK4/6 inhibitors.


Assuntos
Neoplasias da Mama , MicroRNAs , Inibidores de Proteínas Quinases , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Biópsia Líquida , MicroRNAs/genética , MicroRNAs/uso terapêutico , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/farmacologia
4.
Front Oncol ; 12: 862806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719951

RESUMO

Purpose: Tumor-microenvironment interactions are important determinants of drug resistance in colorectal cancer (CRC). We, therefore, set out to understand how interactions between genetically characterized CRC cells and stromal fibroblasts might influence response to molecularly targeted inhibitors. Techniques: Sensitivity to PI3K/AKT/mTOR pathway inhibitors of CRC cell lines, with known genetic background, was investigated under different culture conditions [serum-free medium, fibroblasts' conditioned medium (CM), direct co-culture]. Molecular pathway activation was monitored using Western Blot analysis. Immunoprecipitation was used to detect specific mTOR complex activation. Immunofluorescence was used to analyze cellular PTEN distribution, while different mutant PTEN plasmids were used to map the observed function to specific PTEN protein domains. Results: Exposure to fibroblast-CM resulted in increased growth-inhibitory response to double PI3K/mTOR inhibitors in PTEN-competent CRC cell lines harboring KRAS and PI3K mutations. Such functional effect was attributable to fibroblast-CM induced paradoxical PI3K/mTORC1 pathway activation, occurring in the presence of a functional PTEN protein. At a molecular level, fibroblast-CM induced C-tail phosphorylation and cytoplasmic redistribution of the PTEN protein, thereby impairing its lipid phosphatase function and favored the formation of active, RAPTOR-containing, mTORC1 complexes. However, PTEN's lipid phosphatase function appeared to be dispensable, while complex protein-protein interactions, also involving PTEN/mTOR co-localization and subcellular distribution, were crucial for both mTORC1 activation and sensitivity to double PI3K/mTOR inhibitors. Data Interpretation: Microenvironmental cues, in particular soluble factors produced by stromal fibroblasts, profoundly influence PI3K pathway signaling and functional response to specific inhibitors in CRC cells, depending on their mutational background and PTEN status.

5.
Comput Struct Biotechnol J ; 20: 2558-2563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611117

RESUMO

The SARS-CoV-2 Variants of Concern tracking via Whole Genome Sequencing represents a pillar of public health measures for the containment of the pandemic. The ability to track down the lineage distribution on a local and global scale leads to a better understanding of immune escape and to adopting interventions to contain novel outbreaks. This scenario poses a challenge for NGS laboratories worldwide that are pressed to have both a faster turnaround time and a high-throughput processing of swabs for sequencing and analysis. In this study, we present an optimization of the Illumina COVID-seq protocol carried out on thousands of SARS-CoV-2 samples at the wet and dry level. We discuss the unique challenges related to processing hundreds of swabs per week such as the tradeoff between ultra-high sensitivity and negative contamination levels, cost efficiency and bioinformatics quality metrics.

6.
J Thorac Oncol ; 16(12): 2065-2077, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450259

RESUMO

INTRODUCTION: The connection between driver mutations and the efficacy of immune checkpoint inhibitors is the focus of intense investigations. In lung adenocarcinoma (LUAD), KEAP1/STK11 alterations have been tied to immunoresistance. Nevertheless, the heterogeneity characterizing immunotherapy efficacy suggests the contribution of still unappreciated events. METHODS: Somatic interaction analysis of top-ranking mutant genes in LUAD was carried out in the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) (N = 6208). Mutational processes, intratumor heterogeneity, evolutionary trajectories, immunologic features, and cancer-associated signatures were investigated, exploiting multiple data sets (AACR GENIE, The Cancer Genome Atlas [TCGA], TRAcking Cancer Evolution through therapy [Rx]). The impact of the proposed subtyping on survival outcomes was assessed in two independent cohorts of immune checkpoint inhibitor-treated patients: the tissue-based sequencing cohort (Rome/Memorial Sloan Kettering Cancer Center/Dana-Farber Cancer Institute, tissue-based next-generation sequencing [NGS] cohort, N = 343) and the blood-based sequencing cohort (OAK/POPLAR trials, blood-based NGS cohort, N = 304). RESULTS: Observing the neutral interaction between KEAP1 and TP53, KEAP1/TP53-based subtypes were dissected at the molecular and clinical levels. KEAP1 single-mutant (KEAP1 SM) and KEAP1/TP53 double-mutant (KEAP1/TP53 DM) LUAD share a transcriptomic profile characterized by the overexpression of AKR genes, which are under the control of a productive superenhancer with NEF2L2-binding signals. Nevertheless, KEAP1 SM and KEAP1/TP53 DM tumors differ by mutational repertoire, degree of intratumor heterogeneity, evolutionary trajectories, pathway-level signatures, and immune microenvironment composition. In both cohorts (blood-based NGS and tissue-based NGS), KEAP1 SM tumors had the shortest survival; the KEAP1/TP53 DM subgroup had an intermediate prognosis matching that of pure TP53 LUAD, whereas the longest survival was noticed in the double wild-type group. CONCLUSIONS: Our data provide a framework for genomically-informed immunotherapy, highlighting the importance of multimodal data integration to achieve a clinically exploitable taxonomy.


Assuntos
Adenocarcinoma de Pulmão , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Genômica , Humanos , Imunoterapia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
8.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182542

RESUMO

Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.


Assuntos
Neoplasias da Mama/fisiopatologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Terapia de Alvo Molecular/métodos , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Receptor Tirosina Quinase Axl
9.
Commun Biol ; 3(1): 546, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004975

RESUMO

Inflammation might substantially contribute to the limited therapeutic success of current systemic therapies in colorectal cancer (CRC). Amongst cytokines involved in CRC biology, the proinflammatory chemokine IL-8 has recently emerged as a potential prognostic/predictive biomarker. Here, we show that BRAF mutations and PTEN-loss are associated with high IL-8 levels in CRC models in vitro and that BRAF/MEK/ERK, but not PI3K/mTOR, targeting controls its production in different genetic contexts. In particular, we identified a BRAF/ERK2/CHOP axis affecting IL-8 transcription, through regulation of CHOP subcellular localization, and response to targeted inhibitors. Moreover, RNA Pol II and an open chromatin status in the CHOP-binding region of the IL-8 gene promoter cooperate towards increased IL-8 expression, after a selective BRAF inhibition. Overall, our data show that IL-8 production is finely and differentially regulated depending on the tumor genetic context and might be targeted for therapeutic purposes in molecularly defined subgroups of CRC patients.


Assuntos
Neoplasias Colorretais/metabolismo , Interleucina-8/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição CHOP/metabolismo , Western Blotting , Linhagem Celular Tumoral , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas B-raf/fisiologia , RNA Polimerase II/metabolismo , Transdução de Sinais
10.
Cancers (Basel) ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036192

RESUMO

Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase (MEK), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.

11.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32759236

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) provide significant survival benefits in non-small cell lung cancer (NSCLC). Nevertheless, while some patients obtain a prolonged benefit, a non-negligible fraction of patients experiences an ultrarapid disease progression. Identifying specific molecular backgrounds predicting opposite outcomes is instrumental to optimize the use of these agents in clinical practice. METHODS: We carried out an observational study with prospective design envisioning targeted next-generation sequencing (NGS) with an approved assay in 55 patients with metastatic NSCLC (Rome cohort), of whom 35 were treated with ICIs. Data from three clinically comparable datasets were collected and combined into a metadataset containing 779 patients. The datasets were related to the Memorial Sloan Kettering Cancer Center (MSKCC) cohort (tissue-based NGS) and the randomized phase II and III POPLAR and OAK trials (blood-based NGS). RESULTS: In patients treated with ICIs in the Rome cohort, co-occurring mutations in NOTCH1-3 and homologous repair (HR) genes were associated with durable clinical benefit. Using the MSKCC/POPLAR/OAK metadaset, we confirmed the relationship between the NOTCHmut/HRmut signature and longer progression-free survival (PFS) in ICI-treated patients (multivariate Cox: HR 0.51, 95% CI 0.34 to 0.76, p=0.001). The NOTCHmut/HRmut genomic predictor was also associated with longer survival (log-rank p=0.008), despite patients whose tumors carried the NOTCHmut/HRmut signature had higher metastatic burden as compared with their negative counterpart. Finally, we observed that this genomic predictor was also associated with longer survival in patients with other tumor types treated with ICIs (n=1311, log-rank p=0.002). CONCLUSIONS: Co-occurring mutations in the NOTCH and HR pathways are associated with increased efficacy of immunotherapy in advanced NSCLC. This genomic predictor deserves further investigation to fully assess its potential in informing therapeutic decisions.


Assuntos
Imunoterapia/métodos , Neoplasias Pulmonares/genética , Receptores Notch/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
12.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727102

RESUMO

Mounting preclinical and clinical evidence indicates that rewiring the host immune system in favor of an antitumor microenvironment achieves remarkable clinical efficacy in the treatment of many hematological and solid cancer patients. Nevertheless, despite the promising development of many new and interesting therapeutic strategies, many of these still fail from a clinical point of view, probably due to the lack of prognostic and predictive biomarkers. In that respect, several data shed new light on the role of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) in affecting the composition and function of the tumor microenvironment (TME) as well as resistance/sensitivity to immunotherapy. In this review, we summarize current knowledge on PTEN functions in different TME compartments (immune and stromal cells) and how they can modulate sensitivity/resistance to different immunological manipulations and ultimately influence clinical response to cancer immunotherapy.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , PTEN Fosfo-Hidrolase/imunologia , Microambiente Tumoral/imunologia , Humanos , Neoplasias/patologia
13.
Cells ; 9(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012917

RESUMO

The threatening notoriety of pancreatic cancer mainly arises from its negligible early diagnosis, highly aggressive progression, failure of conventional therapeutic options and consequent very poor prognosis. The most important driver genes of pancreatic cancer are the oncogene KRAS and the tumor suppressors TP53, CDKN2A, and SMAD4. Although the presence of few drivers, several signaling pathways are involved in the oncogenesis of this cancer type, some of them with promising targets for precision oncology. Pancreatic cancer is recognized as one of immunosuppressive phenotype cancer: it is characterized by a fibrotic-desmoplastic stroma, in which there is an intensive cross-talk between several cellular (e.g., fibroblasts, myeloid cells, lymphocytes, endothelial, and myeloid cells) and acellular (collagen, fibronectin, and soluble factors) components. In this review; we aim to describe the current knowledge of the genetic/biological landscape of pancreatic cancer and the composition of its tumor microenvironment; in order to better direct in the intrinsic labyrinth of this complex tumor type. Indeed; disentangling the genetic and molecular characteristics of cancer cells and the environment in which they evolve may represent the crucial step towards more effective therapeutic strategies.


Assuntos
Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Ensaios Clínicos como Assunto , Humanos , Neoplasias Pancreáticas/terapia , Transdução de Sinais
14.
Adv Exp Med Biol ; 1223: 69-80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32030685

RESUMO

The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/imunologia , Microambiente Tumoral/efeitos dos fármacos
15.
Cancers (Basel) ; 11(8)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404976

RESUMO

Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.

16.
J Thorac Oncol ; 14(11): 1924-1934, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31323387

RESUMO

INTRODUCTION: Molecular characterization studies revealed recurrent kelch like ECH associated protein 1 gene (KEAP1)/nuclear factor, erythroid 2 like 2 gene (NFE2L2) alterations in NSCLC. These genes encode two interacting proteins (a stress response pathway [SRP]) that mediate a cytoprotective response to oxidative stress and xenobiotics. Nevertheless, whether KEAP1/NFE2L2 mutations have an impact on clinical outcomes is unclear. METHODS: We performed amplicon-based next-generation sequencing to characterize the SRP in patients with metastatic NSCLC (Regina Elena National Cancer Institute cohort [n = 88]) treated with first-line chemotherapy. Mutations in the DNA damage response (tumor protein p53 gene [TP53], ATM serine/threonine kinase gene [ATM], and ATR serine/threonine kinase gene [ATR]) were concomitantly analyzed. In lung adenocarcinoma (LAC), we also determined the expression of phosphorylated ataxia telangiectasia mutated kinase and ataxia telangiectasia and Rad3-related protein. Two independent cohorts (the Memorial Sloan Kettering Cancer Center cohort and The Cancer Genome Atlas cohort) with data from approximately 1400 patients with advanced LAC were used to assess the reproducibility of the results. RESULTS: In the Regina Elena National Cancer Institute cohort, patients whose tumors carried mutations in the KEAP1/NFE2L2 pathway had significantly shorter progression-free survival and overall survival than their wild-type counterparts did (log-rank p = 0.006 and p = 0.018, respectively). This association was driven by LAC in which KEAP1/NFE2L2 mutations were overrepresented in fast progressors and associated with an increased risk of disease progression and death. LACs carrying KEAP1/NFE2L2 mutations were characterized by elevated expression of phosphorylated ataxia telangiectasia mutated (pATM) kinase and ataxia telangiectasia and Rad3-related (pATR) protein in association with a pattern of mutual exclusivity with TP53 alterations. The relationship between KEAP1/NFE2L2 mutations and shorter survival was validated in the Memorial Sloan Kettering Cancer Center cohort (n = 1256) (log-rank p < 0.001) and in The Cancer Genome Atlas cohort (n = 162) (log-rank p = 0.039). CONCLUSION: These findings suggest that a mutant SRP represents a negative prognostic/predictive factor in metastatic LAC and that KEAP1/NFE2L2 mutations may define a molecular subtype of chemotherapy-resistant and rapidly progressing LAC.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Fator 2 Relacionado a NF-E2/genética , Adenocarcinoma de Pulmão/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Metástase Neoplásica , Estresse Oxidativo , Prognóstico , Taxa de Sobrevida
17.
J Oncol ; 2019: 5373580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191652

RESUMO

Cytokines are a family of soluble factors (Growth Factors (GFs), chemokines, angiogenic factors, and interferons), which regulate a wide range of mechanisms in both physiological and pathological conditions, such as tumor cell growth and progression, angiogenesis, and metastasis. In recent years, the growing interest in developing new cancer targeted therapies has been accompanied by the effort to characterize Tumor Microenvironment (TME) and Tumor-Stroma Interactions (TSI). The connection between tumor and stroma is now well established and, in the last decade, evidence from genetic, pharmacological, and epidemiological data supported the importance of microenvironment in tumor progression. However, several of the mechanisms behind TSI and their implication in tumor progression remain still unclear and it is crucial to establish their potential in determining pharmacological response. Many studies have demonstrated that cytokines network can profoundly affect TME, thus displaying potential therapeutic efficacy in both preclinical and clinical models. The goal of this review is to give an overview of the most relevant cytokines involved in colorectal and pancreatic cancer progression and their implication in drug response.

18.
Cancers (Basel) ; 11(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925702

RESUMO

Identifying putative biomarkers of clinical outcomes in cancer is crucial for successful enrichment, and for the selection of patients who are the most likely to benefit from a specific therapeutic approach. Indeed, current research in personalized cancer therapy focuses on the possibility of identifying biomarkers that predict prognosis, sensitivity or resistance to therapies. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates several crucial cell functions such as proliferation, survival, genomic stability and cell motility through both enzymatic and non-enzymatic activities and phosphatidylinositol 3-kinase (PI3K)-dependent and -independent mechanisms. Despite its undisputed role as a tumor suppressor, assessment of PTEN status in sporadic human tumors has yet to provide clinically robust prognostic, predictive or therapeutic information. This is possibly due to the exceptionally complex regulation of PTEN function, which involves genetic, transcriptional, post-transcriptional and post-translational events. This review shows a brief summary of the regulation and function of PTEN and discusses its controversial aspects as a prognostic/predictive biomarker.

19.
Cancer Drug Resist ; 2(4): 968-979, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-35582268

RESUMO

Colorectal cancer (CRC) still remains a disease with high percentage of death, principally due to therapy resistance and metastasis. During the time the hypothesis has been reinforced that CRC stem cells (CRCSC) are involved in allowing intratumoral heterogeneity, drug escape mechanisms and secondary tumors. CRCSC are characterized by specific surface markers (i.e., CD44 and CD133), signaling pathways activation (i.e., Wnt and Notch) and gene expression (i.e., Oct4 and Snail), which confer to CRCSC self-renewal abilities and pluripotent capacity. Interleukin (IL)-8 is correlated to CRC progression, development of liver metastases and chemoresistance; moreover, IL-8 modulates not only stemness maintenance but also stemness promotion, such as epithelial-mesenchymal transition. This review wants to give a brief and up-to-date overview on IL-8 implication in CRCSC cues.

20.
Int J Mol Sci ; 19(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126252

RESUMO

The mammalian target of rapamycin (mTOR) pathway regulates major processes by integrating a variety of exogenous cues, including diverse environmental inputs in the tumor microenvironment (TME). In recent years, it has been well recognized that cancer cells co-exist and co-evolve with their TME, which is often involved in drug resistance. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both the tumor immunity and angiogenesis. The activation of mTOR signaling is associated with these pro-oncogenic cellular processes, making mTOR a promising target for new combination therapies. This review highlights the role of mTOR signaling in the characterization and the activity of the TME's elements and their implications in cancer immunotherapy.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral , Animais , Humanos , Imunomodulação , Imunoterapia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Serina-Treonina Quinases TOR/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...