Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295435

RESUMO

Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.

2.
Environ Pollut ; 361: 124870, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218201

RESUMO

The exposure and health implications of exhaled aerosol particles from tobacco products remain a critical area of concern in public health. This research aimed to characterize the cytotoxicity of exhaled aerosol particles from conventional cigarettes (CC) and heated tobacco products (HTP) using a novel "Cells-on-Particles" integrated aerosol sampling and cytotoxicity in vitro testing platform. The research uniquely captures the physical and chemical characteristics of aerosols by depositing them onto fibrous matrixes, enabling a more accurate representation of exposure conditions. New insights were provided into the differences between CC and HTP in terms of particle size distributions, cell viability, metabolic activity, and the expression of genes related to xenobiotic metabolism and oxidative stress. This approach marks a significant advancement in the field by offering a more direct and representative method to evaluate the potential health hazards of tobacco aerosol particles.

3.
Toxicology ; 508: 153936, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216545

RESUMO

The presented research introduces the "Cells-on-Particles" integrated aerosol sampling and cytotoxicity testing in vitro platform, which allows for the direct assessment of the biological effects of captured aerosol particles on a selected cell type without the need for extraction or resuspension steps. By utilizing particles with unaltered chemical and physical properties, the method enables simple and fast screening of biological effects on specific cell types, making it a promising tool for assessing the cytotoxicity of particulate matter in ambient and occupational air. Platforms fabricated from cellulose acetate (CA) and poly[ε]caprolactone (PCL) were proven to be biocompatible and promoted the attachment and growth of the human bronchial epithelial cell line BEAS-2B. The PCL platforms were exposed to simulated occupational aerosols of silver, copper, and graphene oxide nanoparticles. Each nanoparticle type exhibited different and dose-dependent cytotoxic effects on cells, evidenced by reduced cell viability and distinct, particle type-dependent gene expression patterns. Notably, copper nanoparticles were identified as the most cytotoxic, and graphene oxide the least. Comparing the "Cells-on-Particles" and submerged exposure ("Particles-on-Cells") testing strategies, BEAS-2B cells responded to selected nanoparticles in a comparable manner, suggesting the developed testing system could be proposed for further evaluation with more complex environmental aerosols. Despite limitations, including particle agglomeration and the need for more replicates to address variability, the "Cells-on-Particles" platform enables effective detection of toxicity induced by relatively low levels of nanoparticles, demonstrating good sensitivity and a relatively simpler procedure compared to standard 2D cell exposure methods.


Assuntos
Aerossóis , Sobrevivência Celular , Testes de Toxicidade , Humanos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Testes de Toxicidade/métodos , Cobre/toxicidade , Grafite/toxicidade , Nanopartículas Metálicas/toxicidade , Células Epiteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Tamanho da Partícula , Prata/toxicidade , Material Particulado/toxicidade , Poliésteres/toxicidade , Poliésteres/química
4.
Front Bioeng Biotechnol ; 10: 971294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082160

RESUMO

Polycaprolactone (PCL) has recently received significant attention due to its mechanical strength, low immunogenicity, elasticity, and biodegradability. Therefore, it is perfectly suitable for cartilage tissue engineering. PCL is relatively hydrophobic in nature, so its hydrophilicity needs to be enhanced before its use in scaffolding. In our study, first, we aimed to improve the hydrophilicity properties after the network of the bilayer scaffold was formed by electrospinning. Electrospun bilayer PCL scaffolds were treated with ozone and further loaded with transforming growth factor-beta 3 (TGFß3). In vitro studies were performed to determine the rabbit muscle-derived stem cells' (rMDSCs) potential to differentiate into chondrocytes after the cells were seeded onto the scaffolds. Statistically significant results indicated that ozonated (O) scaffolds create a better environment for rMDSCs because collagen-II (Coll2) concentrations at day 21 were higher than non-ozonated (NO) scaffolds. In in vivo studies, we aimed to determine the cartilage regeneration outcomes by macroscopical and microscopical/histological evaluations at 3- and 6-month time-points. The Oswestry Arthroscopy Score (OAS) was the highest at both mentioned time-points using the scaffold loaded with TGFß3 and rMDSCs. Evaluation of cartilage electromechanical quantitative parameters (QPs) showed significantly better results in cell-treated scaffolds at both 3 and 6 months. Safranin O staining indicated similar results as in macroscopical evaluations-cell-treated scaffolds revealed greater staining with safranin, although an empty defect also showed better results than non-cell-treated scaffolds. The scaffold with chondrocytes represented the best score when the scaffolds were evaluated with the Mankin histological grading scale. However, as in previous in vivo evaluations, cell-treated scaffolds showed better results than non-cell-treated scaffolds. In conclusion, we have investigated that an ozone-treated scaffold containing TGFß3 with rMDSC is a proper combination and could be a promising scaffold for cartilage regeneration.

5.
Polymers (Basel) ; 14(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746068

RESUMO

Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL-scaffolds were functionalized with ozone and loaded with TGF-ß3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated ("naïve" (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-ß3 and hMDSC compared to NO and scaffolds without TGF-ß3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-ß3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-ß3-loaded scaffold with hMDSC is a promising tool in neocartilage formation.

6.
Carbohydr Polym ; 285: 119260, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287873

RESUMO

The importance of the cellulose cycle has been increasing during the last decade along the ambitious targets of bioeconomy, however many novel fabrication processes yet lack of technological robustness. We present the optimization process for the fabrication of cellulose fibrous matrix by wet electrospinning via the controlled removal of the ionic liquids in order to avoid the formation of film-like structures. Fibers were produced on a bespoke wet-type electrospinning rig from cotton cellulose solutions of 3% in different types of ionic liquids (BMIMAc/C10MIMCl/EMIMAc). Three stage elution with a range of elution ratios using deionized water were applied to coagulate cellulose and remove residuals of ionic liquid. A variety of fibrous morphologies has been obtained. In case of a high water/IL ratio, the median fiber width across all ionic liquids was 0.4 µm, with the porosity at 92.3% and the pore diameter at 155 µm. The increasing elution ratio positively affected separate cellulose fiber formation, crystallinity, and mechanical strength of formed structures.

7.
Pharmaceutics ; 13(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34452249

RESUMO

Ozonation has been proved as a viable surface modification technique providing certain properties to the scaffolds that are essential in tissue engineering. However, the ozone (O3) treatment of PCL scaffolds in aqueous environments has not yet been presented. O3 treatment performed in aqueous environments is more effective compared with traditional, executed in ambient air treatment due to more abundant production of hydroxyl radicals (•OH) within the O3 reaction with water molecules. During interaction with •OH, the scaffold acquires functional groups which improve wettability properties and encapsulate growth factors. In this study, a poly(ε)caprolactone (PCL) scaffold was fabricated using solution electrospinning and was subsequently ozonated in a water reactor. The O3 treatment resulted in the expected occurrence of oxygen-containing functional groups, which improved scaffold wettability by almost 27% and enhanced cell proliferation for up to 14 days. The PCL scaffold was able to withhold 120 min of O3 treatment, maintaining fibrous morphology and mechanical properties.

8.
Basic Clin Pharmacol Toxicol ; 125(2): 166-177, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30801928

RESUMO

Humanity faces an increasing impact of air pollution worldwide, including threats to human health. Air pollutants prompt and promote chronic inflammation, tumourigenesis, autoimmune and other destructive processes in the human body. Post-translational modification of proteins, for example citrullination, results from damaging attacks of pollutants, including smoking, air pollution and others, rendering host tissues immunogenic. Citrullinated proteins and citrullinating enzymes, deiminases, are more prevalent in patients with COPD and correlate with ongoing inflammation and oxidative stress. In this study, we installed an in-house-designed diesel exhaust delivery and cannabidiol vaporization system where mice were exposed to relevant, urban traffic-related levels of diesel exhaust for 14 days and assessed integrity of alveolar tissue, gene expression shifts and changes in protein content in the lungs and other tissues of exposed mice. Systemic presence of modified proteins was also tested. The protective effect of phytocannabinoids was investigated as well. Data obtained in our study show subacute effects of diesel exhaust on mouse lung integrity and protein content. Emphysematous changes are documented in exposed mouse lungs. In parallel, increased levels of citrulline were detected in the alveolar lung tissue and peripheral blood of exposed mice. Pre-treatment with vaporized cannabidiol ameliorated some damaging effects. Results reported hereby provide new insights into subacute lung tissue changes that follow diesel exhaust exposure and suggest possible dietary and/or other therapeutic interventions for maintaining lung health and healthy ageing.


Assuntos
Poluentes Atmosféricos/toxicidade , Citrulinação/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Emissões de Veículos/toxicidade , Administração por Inalação , Animais , Canabinoides/administração & dosagem , Cannabis/química , Modelos Animais de Doenças , Humanos , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/prevenção & controle , Masculino , Camundongos , Nebulizadores e Vaporizadores , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Resultado do Tratamento
9.
Chemosphere ; 223: 474-482, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784754

RESUMO

Aerosol particle, carbonyl, and nicotine concentrations were analysed as pollutants affecting indoor air quality during the usage of electrically-heated tobacco product - the Tobacco Heating System (THS). Quantitative experimental variables included THS use intensity as number of parallel users (1, 3, or 5), distance to the bystander (0.5, 1, or 2 m), as well as environmental conditions in a chamber: ventilation intensity as air changes per hour (0.2, 0.5, or 1 h-1), and relative humidity (RH, 30, 50 or 70%). The real-time particle number (PNC), CO and CO2 concentration, as well as off-line acetaldehyde, formaldehyde, nicotine, and 3-ethenylpyridine concentration was measured during and after the active usage. Use of THS resulted in a statistically significant increase of several analytes including nicotine, acetaldehyde, PM2.5, and PNC as compared to the background. The obtained levels were significantly lower (approximately 16, 8, 8 and 28 times for nicotine, acetaldehyde, PNC and PM2.5, respectively) compared to the levels resulting from conventional cigarette (CC) smoking under identical conditions. The maximum 30 min concentration of PNC (4.8 × 105 #/cm3), as well as maximum concentration of PNC (9.3 × 106 #/cm3) suggest that the intensive use of THS in a confined space with limited ventilation might cause substantially elevated aerosol concentrations, although these particles appeared as highly volatile ones and evaporated within seconds. Generally, the usage intensity (number of simultaneous users) prevailed as the most important factor positively affecting pollutant variations; another important factor was the distance to bystander.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Calefação/métodos , Nicotiana/metabolismo , Produtos do Tabaco/análise , Poluição por Fumaça de Tabaco/análise , Aerossóis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA