Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Hematol ; 98(1): 159-165, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35560045

RESUMO

We designed a trial to simultaneously address the problems of graft versus host disease (GVHD), infection, and recurrence of malignancy after allogeneic stem cell transplantation. CD34+ stem cell isolation was used to minimize the development of acute and chronic GVHD. Two prophylactic infusions, one combining donor-derived cytomegalovirus, Epstein-Barr virus, and Aspergillus fumigatus specific T-cells and the other comprising donor-derived CD19 directed chimeric antigen receptor (CAR) bearing T-cells, were given 21-28 days after transplant. Two patients were transplanted for acute lymphoblastic leukemia from HLA identical siblings using standard doses of cyclophosphamide and total body irradiation without antilymphocyte globulin. Patients received no post-transplant immune suppression and were given no pre-CAR T-cell lymphodepletion. Neutrophil and platelet engraftment was prompt. Following adoptive T-cell infusions, there was rapid appearance of antigen-experienced CD8+ and to a lesser extent CD4+ T-cells. Tetramer-positive T-cells targeting CMV and EBV appeared rapidly after T-cell infusion and persisted for at least 1 year. CAR T-cell expansion occurred and persisted for up to 3 months. T-cell receptor tracking confirmed the presence of product-derived T-cell clones in blood targeting all three pathogens. Both patients are alive over 3 years post-transplant without evidence of GVHD or disease recurrence. Combining robust donor T-cell depletion with directed T-cell adoptive immunotherapy targeting infectious and malignant antigens permits independent modulation of GVHD, infection, and disease recurrence. The combination may separate GVHD from the graft versus tumor effect, accelerate immune reconstitution, and improve transplant tolerability.


Assuntos
Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linfócitos T , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Transplante Homólogo , Resultado do Tratamento , Herpesvirus Humano 4 , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco , Imunoterapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
3.
Blood Adv ; 6(17): 4949-4966, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35819448

RESUMO

Virus-specific T-cells (VSTs) from third-party donors mediate short- and long-term antiviral effects in allogeneic hematopoietic stem cell transplant (HSCT) recipients with relapsed or refractory viral infections. We investigated early administration of third-party VSTs, together with antiviral therapy in patients requiring treatment for first cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection. Thirty HSCT patients were treated with 1 to 4 VST infusions (2 × 107 cells/m2; CMV n=27, EBV n=3) at a median of 4 days after initiation of antiviral treatment. The overall viral response rate was 100%, with a complete response (CR) rate of 94%. Of the 28 patients who achieved a CR, 23 remained virus PCR negative (n=9) or below quantitation limit (n=14) for the duration of follow-up. Four patients had brief episodes of quantifiable reactivation not requiring additional therapy, and one required a second infusion after initial CR, remaining PCR negative thereafter. All 3 patients treated for EBV post-transplant lymphoproliferative disorder achieved sustained CR. Rates of aGVHD and cGVHD after infusion were 13% and 23%, respectively. There were no serious infusion-related adverse events. VST infusion was associated with rapid recovery of CD8+CD45RA-CD62L- and a slower recovery of CD4+CD45RA-CD62L- effector memory T-cells; CMV-specific T-cells comprised up to 13% of CD8+ cells. At 1 year post-transplant, non-relapse mortality was 10%, cumulative incidence of relapse was 7%, overall survival was 88% and 25 of 27 patients had ECOG status of 0 or 1. Early administration of third-party VSTs in conjunction with antiviral treatment appears safe and leads to excellent viral control and clinical outcomes. Registered on Australian New Zealand Clinical Trials Registry as #ACTRN12618000343202.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Antivirais , Austrália , Citomegalovirus , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/terapia , Infecções por Vírus Epstein-Barr/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpesvirus Humano 4 , Humanos , Transplante de Células-Tronco/efeitos adversos , Transplante Homólogo/efeitos adversos
5.
Blood ; 138(16): 1391-1405, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33974080

RESUMO

We performed a phase 1 clinical trial to evaluate outcomes in patients receiving donor-derived CD19-specific chimeric antigen receptor (CAR) T cells for B-cell malignancy that relapsed or persisted after matched related allogeneic hemopoietic stem cell transplant. To overcome the cost and transgene-capacity limitations of traditional viral vectors, CAR T cells were produced using the piggyBac transposon system of genetic modification. Following CAR T-cell infusion, 1 patient developed a gradually enlarging retroperitoneal tumor due to a CAR-expressing CD4+ T-cell lymphoma. Screening of other patients led to the detection, in an asymptomatic patient, of a second CAR T-cell tumor in thoracic para-aortic lymph nodes. Analysis of the first lymphoma showed a high transgene copy number, but no insertion into typical oncogenes. There were also structural changes such as altered genomic copy number and point mutations unrelated to the insertion sites. Transcriptome analysis showed transgene promoter-driven upregulation of transcription of surrounding regions despite insulator sequences surrounding the transgene. However, marked global changes in transcription predominantly correlated with gene copy number rather than insertion sites. In both patients, the CAR T-cell-derived lymphoma progressed and 1 patient died. We describe the first 2 cases of malignant lymphoma derived from CAR gene-modified T cells. Although CAR T cells have an enviable record of safety to date, our results emphasize the need for caution and regular follow-up of CAR T recipients, especially when novel methods of gene transfer are used to create genetically modified immune therapies. This trial was registered at www.anzctr.org.au as ACTRN12617001579381.


Assuntos
Imunoterapia Adotiva/efeitos adversos , Linfoma/etiologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Idoso , Elementos de DNA Transponíveis , Regulação Neoplásica da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Imunoterapia Adotiva/métodos , Leucemia de Células B/genética , Leucemia de Células B/terapia , Linfoma/genética , Linfoma de Células B/genética , Linfoma de Células B/terapia , Masculino , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/metabolismo , Transcriptoma , Transgenes
6.
Clin Transl Immunology ; 9(10): e1200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101678

RESUMO

OBJECTIVE: Adoptive immunotherapy with ex vivo expanded tumor-specific T cells has potential as anticancer therapy. Preferentially expressed antigen in melanoma (PRAME) is an attractive target overexpressed in several cancers including melanoma and acute myeloid leukaemia (AML), with low expression in normal tissue outside the gonads. We developed a GMP-compliant manufacturing method for PRAME-specific T cells from healthy donors for adoptive immunotherapy. METHODS: Mononuclear cells were pulsed with PRAME 15-mer overlapping peptide mix. After 16 h, activated cells expressing CD137 were isolated with immunomagnetic beads and cocultured with irradiated CD137neg fraction in medium supplemented with interleukin (IL)-2, IL-7 and IL-15. Cultured T cells were restimulated with antigen-pulsed autologous cells after 10 days. Cellular phenotype and cytokine response following antigen re-exposure were assessed with flow cytometry, enzyme-linked immunospot (ELISPOT) and supernatant cytokine detection. Detailed phenotypic and functional analysis with mass cytometry and T-cell receptor (TCR) beta clonality studies were performed on selected cultures. RESULTS: PRAME-stimulated cultures (n = 10) had mean expansion of 2500-fold at day 18. Mean CD3+ percentage was 96% with CD4:CD8 ratio of 4:1. Re-exposure to PRAME peptide mixture showed enrichment of CD4 cells expressing interferon (IFN)-γ (mean: 12.2%) and TNF-α (mean: 19.7%). Central and effector memory cells were 23% and 72%, respectively, with 24% T cells expressing PD1. Mass cytometry showed predominance of Th1 phenotype (CXCR3+/CCR4neg/CCR6neg/Tbet+, mean: 73%) and cytokine production including IL-2, IL-4, IL-8, IL-13 and GM-CSF (2%, 6%, 8%, 4% and 11%, respectively). CONCLUSION: PRAME-specific T cells for adoptive immunotherapy were enriched from healthy donor mononuclear cells. The products were oligoclonal, exhibited Th1 phenotype and produced multiple cytokines.

7.
Clin Transl Immunology ; 9(7): e1149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642063

RESUMO

OBJECTIVES: Cytomegalovirus (CMV) is known to have a significant impact on immune recovery post-allogeneic haemopoietic stem cell transplant (HSCT). Adoptive therapy with donor-derived or third-party virus-specific T cells (VST) can restore CMV immunity leading to clinical benefit in prevention and treatment of post-HSCT infection. We developed a mass cytometry approach to study natural immune recovery post-HSCT and assess the mechanisms underlying the clinical benefits observed in recipients of VST. METHODS: A mass cytometry panel of 38 antibodies was utilised for global immune assessment (72 canonical innate and adaptive immune subsets) in HSCT recipients undergoing natural post-HSCT recovery (n = 13) and HSCT recipients who received third-party donor-derived CMV-VST as salvage for unresponsive CMV reactivation (n = 8). RESULTS: Mass cytometry identified distinct immune signatures associated with CMV characterised by a predominance of innate cells (monocytes and NK) seen early and an adaptive signature with activated CD8+ T cells seen later. All CMV-VST recipients had failed standard antiviral pharmacotherapy as a criterion for trial involvement; 5/8 had failed to develop the adaptive immune signature by study enrolment despite significant CMV antigen exposure. Of these, VST administration resulted in development of the adaptive signature in association with CMV control in three patients. Failure to respond to CMV-VST in one patient was associated with persistent absence of the adaptive immune signature. CONCLUSION: The clinical benefit of CMV-VST may be mediated by the recovery of an adaptive immune signature characterised by activated CD8+ T cells.

8.
Blood Adv ; 4(14): 3443-3456, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32722785

RESUMO

Invasive fungal infections are a major cause of disease and death in immunocompromised hosts, including patients undergoing allogeneic hematopoietic stem cell transplant (HSCT). Recovery of adaptive immunity after HSCT correlates strongly with recovery from fungal infection. Using initial selection of lymphocytes expressing the activation marker CD137 after fungal stimulation, we rapidly expanded a population of mainly CD4+ T cells with potent antifungal characteristics, including production of tumor necrosis factor α, interferon γ, interleukin-17, and granulocyte-macrophage colony stimulating factor. Cells were manufactured using a fully good manufacturing practice-compliant process. In vitro, the T cells responded to fungal antigens presented on fully and partially HLA-DRB1 antigen-matched presenting cells, including when the single common DRB1 antigen was allelically mismatched. Administration of antifungal T cells lead to reduction in the severity of pulmonary and cerebral infection in an experimental mouse model of Aspergillus. These data support the establishment of a bank of cryopreserved fungus-specific T cells using normal donors with common HLA DRB1 molecules and testing of partially HLA-matched third-party donor fungus-specific T cells as a potential therapeutic in patients with invasive fungal infection after HSCT.


Assuntos
Antifúngicos , Transplante de Células-Tronco Hematopoéticas , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Células Apresentadoras de Antígenos , Fungos , Cadeias HLA-DRB1 , Humanos , Camundongos
9.
Curr Hematol Malig Rep ; 14(4): 247-260, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31228095

RESUMO

PURPOSE OF REVIEW: Infectious diseases contribute significantly to morbidity and mortality in recipients of allogeneic haematopoietic stem cell transplantation (aHSCT), particularly in the era of highly immunosuppressive transplant regimens and alternate donor transplants. Delayed cellular immune recovery is a major mechanism for the increased risk in these patients. Adoptive cell therapy with ex vivo manipulated pathogen-specific T cells (PSTs) is increasingly taking its place as a treatment strategy using donor-derived or third party-banked cells. RECENT FINDINGS: The majority of clinical trial data in the form of early-phase studies has been in the prophylaxis or treatment of cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (AdV). Advancements in methods to select and enrich PSTs offer the opportunity to target the less common viral pathogens as well as fungi with this technology. Early clinical studies of PSTs targeting polyomaviruses (BK virus and JC virus), human herpesvirus 6 (HHV6), varicella zoster virus (VZV) and Aspergillus spp. have shown promising results in small numbers of patients. Other potential targets include herpes simplex virus (HSV), respiratory viruses and other invasive fungal species. In this review, we describe the burden of disease of this wider spectrum of pathogens, the progress in the development of manufacturing capability, early clinical results and the opportunities and challenges for implementation in the clinic.


Assuntos
Antígenos Virais/imunologia , Epitopos de Linfócito T/imunologia , Interações Hospedeiro-Patógeno/imunologia , Infecções Oportunistas/etiologia , Linfócitos T/imunologia , Viroses/etiologia , Adenoviridae/imunologia , Animais , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Herpesvirus Humano 4/imunologia , Humanos , Reconstituição Imune , Hospedeiro Imunocomprometido , Imunoterapia Adotiva/métodos , Infecções Oportunistas/metabolismo , Infecções Oportunistas/terapia , Linfócitos T/metabolismo , Transplante Homólogo , Resultado do Tratamento , Viroses/metabolismo , Viroses/terapia
10.
Curr Opin Infect Dis ; 30(6): 518-527, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28984641

RESUMO

PURPOSE OF REVIEW: Invasive fungal disease (IFD) is a cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. As more potent broad-spectrum antifungal agents are used in prophylaxis, drug resistance and less common fungal species have increased in frequency. Here we review current treatments available for IFD and examine the potential for adoptive T-cell treatment to enhance current therapeutic choices in IFD. RECENT FINDINGS: There is growing evidence supporting the role of T cells as well as phagocytes in antifungal immunity. T cells recognizing specific antigens expressed on fungal morphotypes have been identified and the role of T-cell transfer has been explored in animal models. The clinical efficacy of adoptive transfer of antigen-specific T cells for prophylaxis and treatment of viral infections post-HSCT has raised interest in developing good manufacturing practice (GMP)-compliant methods for manufacturing and testing fungus-specific T cells after HSCT. SUMMARY: As the outcomes of IFD post-HSCT are poor, reconstitution of antifungal immunity offers a way to correct the underlying deficiency that has caused the infection rather than simply pharmacologically suppress fungal growth. The clinical development of fungus specific T cells is in its early stages and clinical trials are needed in order to evaluate safety and efficacy.


Assuntos
Transferência Adotiva , Transplante de Células-Tronco Hematopoéticas , Micoses/terapia , Linfócitos T/transplante , Antifúngicos/uso terapêutico , Candidemia/terapia , Humanos , Aspergilose Pulmonar Invasiva/terapia
11.
Blood Adv ; 1(24): 2193-2205, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29296867

RESUMO

Donor-derived adoptive T-cell therapy is a safe and effective treatment of viral infection posttransplant, but it is limited by donor serostatus and availability and by its personalized nature. Off-the-shelf, third-party virus-specific T cells (VSTs) appear promising, but the long-term safety and durability of responses have yet to be established. We conducted a prospective study of 30 allogeneic hemopoietic stem cell transplant (HSCT) patients with persistent or recurrent cytomegalovirus (CMV) (n = 28), Epstein-Barr virus (n = 1), or adenovirus (n = 1) after standard therapy. Patients were treated with infusions of partially HLA-matched, third-party, ex vivo-expanded VSTs (total = 50 infusions) at a median of 75 days post-HSCT (range, 37 to 349 days). Safety, viral dynamics, and immune recovery were monitored for 12 months. Infusions were safe and well tolerated. Acute graft versus host disease occurred in 2 patients, despite a median HLA match between VSTs and the recipient of 2 of 6 antigens. At 12 months, the cumulative incidence of overall response was 93%. Virological control was durable in the majority of patients; the reintroduction of antiviral therapy after the final infusion occurred in 5 patients. CMV-specific T-cell immunity rose significantly and coincided with a rise in CD8+ terminal effector cells. PD-1 expression was elevated on CD8+ lymphocytes before the administration of third-party T cells and remained elevated at the time of viral control. Third-party VSTs show prolonged benefit, with virological control achieved in association with the recovery of CD8+ effector T cells possibly facilitated by VST infusion. This trial was registered at www.clinicaltrials.gov as #NCT02779439 and www.anzctr.org.au as #ACTRN12613000603718.

12.
J Virol ; 87(18): 10273-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864618

RESUMO

Several human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets. Skewing of polarization toward an M2 subset may benefit the virus by limiting the proinflammatory responses to infection, and so we determined whether HCMV-encoded viral IL-10 influenced monocyte polarization. Recombinant viral IL-10 protein polarized CD14(+) monocytes toward an anti-inflammatory M2 subset with an M2c phenotype, as demonstrated by high expression of CD163 and CD14 and suppression of major histocompatibility complex (MHC) class II. Significantly, in the context of productive HCMV infection, viral IL-10 produced by infected cells polarized uninfected monocytes toward an M2c phenotype. We also assessed the impact of viral IL-10 on heme oxygenase 1 (HO-1), which is an enzyme linked with suppression of inflammatory responses. Polarization of monocytes by viral IL-10 resulted in upregulation of HO-1, and inhibition of HO-1 function resulted in a loss of capacity of viral IL-10 to suppress tumor necrosis factor alpha (TNF-α) and IL-1ß, implicating HO-1 in viral IL-10-induced suppression of proinflammatory cytokines by M2c monocytes. In addition, a functional consequence of monocytes polarized with viral IL-10 was a decreased capacity to activate CD4(+) T cells. This study identifies a novel role for viral IL-10 in driving M2c polarization, which may limit virus clearance by restricting proinflammatory and CD4(+) T cell responses at sites of infection.


Assuntos
Citomegalovirus/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Interleucina-10/imunologia , Monócitos/imunologia , Monócitos/virologia , Fatores de Virulência/imunologia , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Citomegalovirus/fisiologia , Heme Oxigenase-1/análise , Antígenos de Histocompatibilidade Classe II/análise , Humanos , Interleucina-10/metabolismo , Receptores de Lipopolissacarídeos/análise , Monócitos/química , Receptores de Superfície Celular/análise , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo
13.
Biol Blood Marrow Transplant ; 19(5): 725-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23380344

RESUMO

Uncontrolled cytomegalovirus (CMV) reactivation after allogeneic hematopoietic stem cell transplantation causes significant morbidity and mortality. Adoptive transfer of CMV-specific cytotoxic T lymphocytes (CTLs) is a promising therapy to treat reactivation and prevent viral disease. In this article, we describe the generation of clinical-grade CMV-specific CTLs directly from granulocyte colony-stimulating factor-mobilized hemopoietic progenitor cell (G-HPC) products collected for transplantation. This method requires less than 2.5% of a typical G-HPC product to reproducibly expand CMV-specific CTLs ex vivo. Comparison of 11 CMV CTL lines generated from G-HPC products with 52 CMV CTL lines generated from nonmobilized peripheral blood revealed similar expansion kinetics and phenotype. G-HPC-derived CTLs produced IFN-γ after reexposure to CMVpp65 antigen and exhibited CMV-directed cytotoxicity but no alloreactivity against transplantation recipient-derived cells. Seven patients received CMV-specific CTL lines expanded from G-HPC products in a prophylactic adoptive immunotherapy phase I/II clinical trial. Use of G-HPC products will facilitate integration of CTL generation into established quality systems of transplantation centers and more rapid inclusion of T cell therapies into routine clinical care.


Assuntos
Citomegalovirus/imunologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Citomegalovirus/genética , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/imunologia , Citotoxicidade Imunológica , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/virologia
14.
Antimicrob Agents Chemother ; 50(9): 3019-27, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16940097

RESUMO

Research into antiviral agents directed at hepatitis C virus (HCV) proteins is commonly based and tested on a single genotype, namely, genotype 1. This is despite the high level of variability of the RNA virus and the frequency of infection with genotypes other than genotype 1. The systematic evolution of ligands by exponential enrichment (SELEX) is a novel in vitro approach used in this study that allows rapid screening of vast nucleic acid libraries to isolate sequences (termed aptamers) that bind to target proteins with high affinity. The SELEX approach was used in the present study to isolate DNA aptamers to the RNA-dependent RNA polymerase (RdRp) (nonstructural protein 5B [NS5B]) of HCV subtype 3a, with the aim of inhibiting polymerase activity. Ten rounds of selection were performed using a Biacore 2000 as the partitioning system. Two aptamers, r10/43 and r10/47, were chosen for further studies on the basis of their abilities to bind the HCV RdRp and inhibit polymerase activity. The affinities (equilibrium dissociation constants) of these aptamers for the HCV subtype 3a polymerase were estimated to be 1.3 +/- 0.3 nM (r10/43) and 23.5 +/- 6.7 nM (r10/47). The inhibition constants of r10/43 and r10/47 were estimated to be 1.4 +/- 2.4 nM and 6.0 +/- 2.3 nM, respectively. Inhibition of HCV 3a polymerase was specific for r10/47, while r10/43 also demonstrated some inhibitory effect on norovirus and phi6 polymerase activity. Neither r10/43 nor r10/47 was able to inhibit the RdRp activity of HCV genotype 1a and 1b polymerases. This study is the first description of an inhibitor specific to the HCV subtype 3a polymerase.


Assuntos
Aptâmeros de Nucleotídeos/genética , Hepacivirus/genética , RNA Polimerase Dependente de RNA/genética , Aptâmeros de Nucleotídeos/isolamento & purificação , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Genótipo , Hepacivirus/enzimologia , Cinética , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Técnica de Seleção de Aptâmeros , Alinhamento de Sequência , Especificidade por Substrato
15.
Emerg Infect Dis ; 11(7): 1079-85, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16022784

RESUMO

Norovirus (NoV) genogroups I and II (GI and GII) are now recognized as the predominant worldwide cause of outbreaks of acute gastroenteritis in humans. Three recombinant NoV GII isolates were identified and characterized, 2 of which are unrelated to any previously published recombinant NoV. Using data from the current study, published sequences, database searches, and molecular techniques, we identified 23 recombinant NoV GII and 1 recombinant NoV GI isolates. Analysis of the genetic relationships among the recombinant NoV GII isolates identified 9 independent recombinant sequences; the other 14 strains were close relatives. Two of the 9 independent recombinant NoV were closely related to other recombinants only in the polymerase region, and in a similar fashion 1 recombinant NoV was closely related to another only in the capsid region. Breakpoint analysis of recombinant NoV showed that recombination occurred in the open reading frame (ORF)1/ORF2 overlap. We provide evidence to support the theory of the role of subgenomic RNA promoters as recombination hotspots and describe a simple mechanism of how recombination might occur in NoV.


Assuntos
Variação Genética , Norovirus/genética , Fases de Leitura Aberta/genética , RNA Viral/genética , Recombinação Genética , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Surtos de Doenças , Gastroenterite/epidemiologia , Gastroenterite/virologia , Humanos , New South Wales/epidemiologia , Filogenia , Proteínas Virais/genética
16.
J Med Virol ; 76(2): 215-22, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15834872

RESUMO

Genotyping and serotyping of enteroviruses is important for epidemiological, prognostic, and therapeutic reasons. In this study clinical isolates of enterovirus 71 during an outbreak of childhood meningoencephalitis in Sydney, Australia were identified using heteroduplex mobility analysis (HMA) of products from RT-PCR amplification of the 5' untranslated region. Five enterovirus 71 isolates shared identical heteroduplex patterns and nucleotide sequences in the 5' untranslated region. A sixth isolate exhibited minor differences in heteroduplex pattern and sequencing confirmed the isolate varied by 1% at the nucleotide level. The use of multiple reference strains and the analysis of heteroduplex patterns increased the confidence of isolate identification, and allowed identification of strain variation which could be subsequently further analyzed using sequencing. HMA can be used to accurately distinguish identical and variant isolates derived from sporadic cases and clustered infections with enteroviruses, including those causing serious infections.


Assuntos
Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus/classificação , Enterovirus/genética , Análise Heteroduplex , RNA Viral/genética , Regiões 5' não Traduzidas , Austrália/epidemiologia , DNA Viral/química , DNA Viral/genética , Enterovirus/isolamento & purificação , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...