Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Neuroimmunol Neuroinflamm ; 1(1): e11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25340055

RESUMO

OBJECTIVE: To compare performance of contemporary aquaporin-4-immunoglobulin (Ig) G assays in clinical service. METHODS: Sera from neurologic patients (4 groups) and controls were tested initially by service ELISA (recombinant human aquaporin-4, M1 isoform) and then by cell-based fluorescence assays: fixed (CBA, M1-aquaporin-4, observer-scored) and live (fluorescence-activated cell sorting [FACS], M1 and M23 aquaporin-4 isoforms). Group 1: all Mayo Clinic patients tested from January to May 2012; group 2: consecutive aquaporin-4-IgG-positive patients from September 2011 (Mayo and non-Mayo); group 3: suspected ELISA false-negatives from 2011 to 2013 (physician-reported, high likelihood of neuromyelitis optica spectrum disorders [NMOSDs] clinically); group 4: suspected ELISA false-positives (physician-reported, not NMOSD clinically). RESULTS: Group 1 (n = 388): M1-FACS assay performed optimally (areas under the curves: M1 = 0.64; M23 = 0.57 [p = 0.02]). Group 2 (n = 30): NMOSD clinical diagnosis was confirmed by: M23-FACS, 24; M1-FACS, 23; M1-CBA, 20; and M1-ELISA, 18. Six results were suspected false-positive: M23-FACS, 2; M1-ELISA, 2; and M23-FACS, M1-FACS, and M1-CBA, 2. Group 3 (n = 31, suspected M1-ELISA false-negatives): results were positive for 5 sera: M1-FACS, 5; M23-FACS, 3; and M1-CBA, 2. Group 4 (n = 41, suspected M1-ELISA false-positives): all negative except 1 (positive only by M1-CBA). M1/M23-cotransfected cells expressing smaller membrane arrays of aquaporin-4 yielded fewer false- positive FACS results than M23-transfected cells. CONCLUSION: Aquaporin-4-transfected CBAs, particularly M1-FACS, perform optimally in aiding NMOSD serologic diagnosis. High-order arrays of M23-aquaporin-4 may yield false-positive results by binding IgG nonspecifically.

2.
J Neural Transm Suppl ; (71): 173-96, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17447428

RESUMO

Because of the multiple biochemical pathways that require iron, iron deficiency can impact brain metabolism in many ways. The goal of this study was to identify a molecular footprint associated with ongoing versus long term consequences of iron deficiency using microarray analysis. Rats were born to iron-deficient mothers, and were analyzed at two different ages: 21 days, while weaning and iron-deficient; and six months, after a five month iron-sufficient recovery period. Overall, the data indicate that ongoing iron deficiency impacts multiple pathways, whereas the long term consequences of iron deficiency on gene expression are more limited. These data suggest that the gene array profiles obtained at postnatal day 21 reflect a brain under development in a metabolically compromised setting that given appropriate intervention is mostly correctable. There are, however, long term consequences to the developmental iron deficiency that could underlie the neurological deficits reported for iron deficiency.


Assuntos
Encéfalo/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Deficiências de Ferro , RNA Mensageiro/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Feminino , Ferro da Dieta/administração & dosagem , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...