Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 339, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705559

RESUMO

Biological traits analysis (BTA) provides insight into causes and consequences of biodiversity change that cannot be achieved using traditional taxonomic approaches. However, acquiring information on biological traits (i.e., the behavioural, morphological, and reproductive characteristics of taxa) can be extremely time-consuming, especially for large community datasets, thus hindering the successful application of BTA. Here, we present information on ten key biological traits for over a thousand marine benthic invertebrate taxa surveyed in Northwest Europe (mainly the UK shelf). Scores of 0 to 3 are provided to indicate our confidence that taxa exhibit each possible mode of trait expression. The information was acquired over a decade through an extensive appraisal of relevant sources, including peer-reviewed papers, books, online material and, where necessary, professional judgement. These data may be inspected, used, and augmented by fellow researchers, thus assisting in the wider application of BTA in marine benthic ecology.


Assuntos
Organismos Aquáticos , Biodiversidade , Invertebrados , Animais , Ecossistema , Monitoramento Ambiental , Europa (Continente)
2.
PLoS One ; 11(11): e0165739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812164

RESUMO

Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.


Assuntos
Anfípodes/metabolismo , Ecossistema , Sedimentos Geológicos/análise , Poliquetos/metabolismo , Animais , Organismos Aquáticos/metabolismo , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...