Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253205

RESUMO

BackgroundCurrent understanding of COVID-19 pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies evaluating patient tissues with advanced molecular tools. MethodsAutopsy tissues from two COVID-19 patients, one of whom died after a month-long hospitalization with multi-organ involvement while the other died after a few days of respiratory symptoms, were evaluated using multi-scale RNASeq methods (bulk, single-nuclei, and spatial RNASeq next-generation sequencing) to provide unprecedented molecular resolution of COVID-19 induced damage. FindingsComparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin-like receptor or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin I converting enzyme 2 was rarely expressed, while Basignin showed diffuse expression, and alanyl aminopeptidase was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptomatology with Digital Spatial Profiling resulted in distinct molecular phenotypes. InterpretationCOVID-19 is a far more complex and heterogeneous disease than initially anticipated. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors at play in individual patients, measure the staggering diversity of receptors in specific brain areas and other well-defined tissue compartments at the single-cell level, and help dissect differences driving diverging clinical courses among patients. Extension of this approach to larger datasets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology. FundingNo external funding was used in this study. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSInformation regarding changes seen in COVID-19 has accumulated very rapidly over a short period of time. Studies often rely on examination of normal samples and model systems, or are limited to peripheral blood or small biopsies when dealing with tissues collected from patients infected with SARS-CoV-2. For that reason, autopsy studies have become an important source of insights into the pathophysiology of severe COVID-19 disease, highlighting the emerging role of hyperinflammatory and hypercoagulable syndromes. Studies of autopsy tissues, however, are usually limited to histopathologic and immunohistochemical evaluation. The next frontier in understanding COVID-19 mechanisms of disease will require generation of highly dimensional, patient-specific datasets that can help dissect this complex and heterogeneous disease. Added value of this studyOur work illustrates how high-resolution molecular and spatial profiling of COVID-19 patient tissues collected during rapid autopsies can serve as a hypothesis-generating tool to identify key mediators driving the pathophysiology of COVID-19 for diagnostic and therapeutic target testing. Here we employ bulk RNA sequencing to identify key regulators of COVID-19 and list specific mediators for further study as potential diagnostic and therapeutic targets. We use single-nuclei RNA sequencing to highlight the diversity and heterogeneity of coronavirus receptors within the brain, suggesting that it will be critical to expand the focus from ACE2 to include other receptors, such as BSG and ANPEP, and we perform digital spatial profiling of lung and lymph node tissue to compare two patients with different clinical courses and symptomatology. Implications of all the available evidenceCOVID-19 is a far more heterogeneous and complex disease than initially anticipated. Advanced molecular tools can help identify specific pathways and effectors driving the pathophysiology of COVID-19 and lead to novel biomarkers and therapeutic targets in a patient-specific manner. Larger studies representing the diversity of clinical presentations and pre-existing conditions will be needed to capture the full complexity of this disease.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20195818

RESUMO

Background Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection in patients with Coronavirus Disease 2019 (COVID-19) prominently manifests with pulmonary symptoms histologically reflected by diffuse alveolar damage (DAD), excess inflammation, pneumocyte hyperplasia and proliferation, and formation of platelet aggregates or thromboemboli. However, the mechanisms mediating these processes remain unclear. Methods We performed multicolor staining for viral proteins, and lineage cell markers to identify SARS-CoV-2 tropism and to define the lung pathobiology in postmortem tissues from five patients with fatal SARS-CoV-2 infections. Findings The lung parenchyma showed severe DAD with thromboemboli in all cases. SARS-CoV-2 infection was found in an extensive range of cells including alveolar epithelial type II/pneumocyte type II (AT2) cells (HT2-280), ciliated cells (tyr--tubulin), goblet cells (MUC5AC), club-like cells (MUC5B) and endothelial cells (CD31 and CD34). Greater than 90% of infiltrating immune cells were positive for viral proteins including macrophages and monocytes (CD68 and CD163), neutrophils (ELA-2), natural killer (NK) cells (CD56), B-cells (CD19 and CD20), and T-cells (CD3{varepsilon}). Most but not all infected cells were positive for the viral entry receptor angiotensin-converting enzyme-2 (ACE2). The numbers of infected and ACE2-positive cells correlated with the extent of tissue damage. The infected tissues exhibited low numbers of B-cells and abundant CD3{varepsilon}+ T-cells consisting of mainly T helper cells (CD4), few cytotoxic T cells (CTL, CD8), and no T regulatory cell (FOXP3). Antigen presenting molecule HLA-DR of B and T cells was abundant in all cases. Robust interleukin-6 (IL-6) expression was present in most uninfected and infected cells, with higher expression levels observed in cases with more tissue damage. Interpretation In lung tissues from severely affected COVID-19 patients, there is evidence for broad SARS-CoV-2 cell tropisms, activation of immune cells, and clearance of immunosuppressive cells, which could contribute to severe tissue damage, thromboemboli, excess inflammation and compromised adaptive immune responses.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20099960

RESUMO

BACKGROUNDSevere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe, disproportionately affecting New York City. A comprehensive, integrative autopsy series that advances the mechanistic discussion surrounding this disease process is still lacking. METHODSAutopsies were performed at the Mount Sinai Hospital on 67 COVID-19 positive patients and data from the clinical records were obtained from the Mount Sinai Data Warehouse. The experimental design included a comprehensive microscopic examination carried out by a team of expert pathologists, along with transmission electron microscopy, immunohistochemistry, RNA in situ hybridization, as well as immunology and serology assays. RESULTSLaboratory results of our COVID-19 cohort show elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8 and TNF. Autopsies revealed large pulmonary emboli in four cases. We report microthrombi in multiple organ systems including the brain, as well as conspicuous hemophagocytosis and a secondary hemophagocytic lymphohistiocytosis-like syndrome in many of our patients. We provide electron microscopic, immunofluorescent and immunohistochemical evidence of the presence of the virus and the ACE2 receptor in our samples. CONCLUSIONSWe report a comprehensive autopsy series of 67 COVID-19 positive patients revealing that this disease, so far conceptualized as a primarily respiratory viral illness, also causes endothelial dysfunction, a hypercoagulable state, and an imbalance of both the innate and adaptive immune responses. Novel findings reported here include an endothelial phenotype of ACE2 in selected organs, which correlates with clotting abnormalities and thrombotic microangiopathy, addressing the prominent coagulopathy and neuropsychiatric symptoms. Another original observation is that of macrophage activation syndrome, with hemophagocytosis and a hemophagocytic lymphohistiocytosis-like disorder, underlying the microangiopathy and excessive cytokine release. We discuss the involvement of critical regulatory pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...