Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1627, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388656

RESUMO

The number of embryonic primordial germ cells in Drosophila is determined by the quantity of germ plasm, whose assembly starts in the posterior region of the oocyte during oogenesis. Here, we report that extending JAK-STAT activity in the posterior somatic follicular epithelium leads to an excess of primordial germ cells in the future embryo. We show that JAK-STAT signaling is necessary for the differentiation of approximately 20 specialized follicle cells maintaining tight contact with the oocyte. These cells define, in the underlying posterior oocyte cortex, the anchoring of the germ cell determinant oskar mRNA. We reveal that the apical surface of these posterior anchoring cells extends long filopodia penetrating the oocyte. We identify two JAK-STAT targets in these cells that are each sufficient to extend the zone of contact with the oocyte, thereby leading to production of extra primordial germ cells. JAK-STAT signaling thus determines a fixed number of posterior anchoring cells required for anterior-posterior oocyte polarity and for the development of the future germline.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Oogênese/genética , Células Germinativas/metabolismo , Polaridade Celular , Drosophila melanogaster/metabolismo
2.
Front Cell Dev Biol ; 9: 719582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34476234

RESUMO

In cell biology, detection of protein subcellular localizations is often achieved by optical microscopy techniques and more rarely by electron microscopy (EM) despite the greater resolution offered by EM. One of the possible reasons was that protein detection by EM required specific antibodies whereas this need could be circumvented by using fluorescently-tagged proteins in optical microscopy approaches. Recently, the description of a genetically encodable EM tag, the engineered ascorbate peroxidase (APEX), whose activity can be monitored by electron-dense DAB precipitates, has widened the possibilities of specific protein detection in EM. However, this technique still requires the generation of new molecular constructions. Thus, we decided to develop a versatile method that would take advantage of the numerous GFP-tagged proteins already existing and create a tool combining a nanobody anti-GFP (GBP) with APEX. This GBP-APEX tool allows a simple and efficient detection of any GFP fusion proteins without the needs of specific antibodies nor the generation of additional constructions. We have shown the feasibility and efficiency of this method to detect various proteins in Drosophila ovarian follicles such as nuclear proteins, proteins associated with endocytic vesicles, plasma membranes or nuclear envelopes. Lastly, we expressed this tool in Drosophila with the UAS/GAL4 system that enables spatiotemporal control of the protein detection.

3.
Elife ; 82019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30672465

RESUMO

The scaffold protein PAR3 and the kinase PAR1 are essential proteins that control cell polarity. Their precise opposite localisations define plasma membrane domains with specific functions. PAR3 and PAR1 are mutually inhibited by direct or indirect phosphorylations, but their fates once phosphorylated are poorly known. Through precise spatiotemporal quantification of PAR3 localisation in the Drosophila oocyte, we identify several mechanisms responsible for its anterior cortex accumulation and its posterior exclusion. We show that PAR3 posterior plasma membrane exclusion depends on PAR1 and an endocytic mechanism relying on RAB5 and PI(4,5)P2. In a second phase, microtubules and the dynein motor, in connection with vesicular trafficking involving RAB11 and IKK-related kinase, IKKε, are required for PAR3 transport towards the anterior cortex. Altogether, our results point to a connection between membrane trafficking and dynein-mediated transport to sustain PAR3 asymmetry.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Padronização Corporal , Citoesqueleto/metabolismo , Endocitose , Oócitos/citologia , Oócitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Transporte Proteico
4.
Results Probl Cell Differ ; 63: 169-187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28779318

RESUMO

Phosphatidylinositol phosphates (PIPs) are essential membrane components. They are localized at distinct membrane domains and recruit distinct effectors; they play an important role in the maintenance of membrane identity. They are essential for many cellular functions that include membrane trafficking, cytoskeletal organization, cell polarity and tissue morphogenesis. Cell polarity is also controlled by a set of polarity proteins, the PAR proteins, well conserved among bilaterians. These proteins are part of two dynamic networks that are engaged in a mutual negative-feedback regulation. PAR proteins control cell polarity by regulating cytoskeletal organization, asymmetric distributions of cellular components and directional transport through the cells. They share common activities with the PIPs in the control of intracellular polarity. Therefore, the analysis of potential cross talks between polarity proteins and PIPs is particularly important. The Drosophila egg chamber provides a very good model system to study the processes that control cell polarity. It includes the oocyte, a large cell in which asymmetric transport is very easy to monitor. Furthermore, the oocyte is surrounded by a follicular epithelium that allows the study of cross talks between polarity and tissue morphogenesis. This review focuses on the polarization of Drosophila egg chamber and our understanding of PIPs requirement during Drosophila oogenesis and discusses the relationship between PIPs and polarity proteins.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Oogênese , Fosfatidilinositóis/metabolismo , Animais , Feminino
5.
Development ; 142(2): 363-74, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25564624

RESUMO

Epithelial remodelling is an essential mechanism for organogenesis, during which cells change shape and position while maintaining contact with each other. Adherens junctions (AJs) mediate stable intercellular cohesion but must be actively reorganised to allow morphogenesis. Vesicle trafficking and the microtubule (MT) cytoskeleton contribute to regulating AJs but their interrelationship remains elusive. We carried out a detailed analysis of the role of MTs in cell remodelling during formation of the tracheal system in the Drosophila embryo. Induction of MT depolymerisation specifically in tracheal cells shows that MTs are essential during a specific time frame of tracheal cell elongation while the branch extends. In the absence of MTs, one tracheal cell per branch overelongates, ultimately leading to branch break. Three-dimensional quantifications revealed that MTs are crucial to sustain E-Cadherin (Shotgun) and Par-3 (Bazooka) levels at AJs. Maintaining E-Cadherin/Par-3 levels at the apical domain requires de novo synthesis rather than internalisation and recycling from and to the apical plasma membrane. However, apical targeting of E-Cadherin and Par-3 requires functional recycling endosomes, suggesting an intermediate role for this compartment in targeting de novo synthesized E-Cadherin to the plasma membrane. We demonstrate that apical enrichment of recycling endosomes is dependent on the MT motor Dynein and essential for the function of this vesicular compartment. In addition, we establish that E-Cadherin dynamics and MT requirement differ in remodelling tracheal cells versus planar epithelial cells. Altogether, our results uncover an MT-Dynein-dependent apical restriction of recycling endosomes that controls adhesion by sustaining Par-3 and E-Cadherin levels at AJs during morphogenesis.


Assuntos
Junções Aderentes/fisiologia , Drosophila/embriologia , Endossomos/fisiologia , Microtúbulos/fisiologia , Organogênese/fisiologia , Traqueia/embriologia , Animais , Caderinas/metabolismo , Dineínas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica
6.
Curr Biol ; 24(10): 1071-9, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24768049

RESUMO

BACKGROUND: The control of apical-basal polarity in epithelial layers is a fundamental event in many processes, ranging from embryonic development to tumor formation. A key feature of polarized epithelial cells is their ability to maintain an asymmetric distribution of specific molecular complexes, including the phosphoinositides PI(4,5)P2 and PI(3,4,5)P3. The spatiotemporal regulation of these phosphoinositides is controlled by the concerted action of phosphoinositide kinases and phosphatases. RESULTS: Using the Drosophila follicular epithelium as a model system in vivo, we show here that PI(4,5)P2 is crucial to maintain apical-basal polarity. PI(4,5)P2 is essentially regulated by the PI4P5 kinase Skittles (SKTL), whereas neither the phosphatase PTEN nor the PI(4,5)P3 kinase DP110 lead to loss of apical-basal polarity. By inactivating SKTL and thereby strongly reducing PI(4,5)P2 levels in a single cell of the epithelium, we observe the disassembly of adherens junctions, actin cytoskeleton reorganization, and apical constriction leading to delamination, a process similar to that observed during epithelial-mesenchymal transition. We provide evidence that PI(4,5)P2 controls the apical targeting of PAR-3/Bazooka to the plasma membrane and that the loss of this polarized distribution is sufficient to induce a similar cell shape change. Finally, we show that PI(4,5)P2 is excluded from the cell apex and that PAR-3 diffuses laterally just prior to the apical constriction in a context of endogenous invagination. CONCLUSIONS: All together, these results indicate that the PIP5 kinase SKTL, by controlling PI(4,5)P2 polarity, regulates PAR-3 localization and thus the size of the apical domain.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Células Epiteliais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfatidilinositóis/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Animais , Membrana Celular/metabolismo , Polaridade Celular , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morfogênese
7.
FEMS Yeast Res ; 11(2): 179-91, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21143383

RESUMO

The Rho GTPase-activating protein Rgd1p positively regulates the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Two-hybrid screening identified Tos2p as a candidate Rgd1p-binding protein. Further analyses confirmed that Tos2p binds to the RhoGAP Rgd1p through its C-terminal region. Both Tos2p and Rgd1p are localized to polarized growth sites during the cell cycle and associated with detergent-resistant membranes. We observed that TOS2 overexpression suppressed rgd1Δ sensitivity to a low pH. In the tos2Δ strain, the amount of GTP-bound Rho3p was increased, suggesting an influence of Tos2p on Rgd1p activity in vivo. We also showed a functional interaction between the TOS2 and the RHO3 genes: TOS2 overexpression partially suppressed the growth defect of rho3-V51 cells at a restrictive temperature. We propose that Tos2p, a protein involved in polarized growth and most probably associated with the plasma membrane, modulates the action of Rgd1p and Rho3p in S. cerevisiae.


Assuntos
Proteínas de Ciclo Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Deleção de Genes , Ligação Proteica , Proteínas Quinases/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Development ; 135(23): 3829-38, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18948416

RESUMO

The attachment of the cytoskeleton to the plasma membrane is crucial in controlling the polarized transport of cell-fate-determining molecules. Attachment involves adaptor molecules, which have the capacity to bind to both the plasma membrane and elements of the cytoskeleton, such as microtubules and actin filaments. Using the Drosophila oocyte as a model system, we show that the type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K), Skittles, is necessary to sustain the organization of microtubules and actin cytoskeleton required for the asymmetric transport of oskar, bicoid and gurken mRNAs and thereby controls the establishment of cell polarity. We show that Skittles function is crucial to synthesize and maintain phosphatidylinositol 4,5 bisphosphate (PIP2) at the plasma membrane in the oocyte. Reduction of Skittles activity impairs activation at the plasma membrane of Moesin, a member of the ERM family known to link the plasma membrane to the actin-based cytoskeleton. Furthermore, we provide evidence that Skittles, by controlling the localization of Bazooka, Par-1 and Lgl, but not Lkb1, to the cell membrane, regulates PAR polarity proteins and the maintenance of specific cortical domains along the anteroposterior axis.


Assuntos
Polaridade Celular , Drosophila melanogaster/enzimologia , Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/enzimologia , Fosfatidilinositol 4,5-Difosfato/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Actinas/metabolismo , Alelos , Animais , Transporte Biológico , Padronização Corporal , Membrana Celular/enzimologia , Núcleo Celular/enzimologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/enzimologia , Mutação/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Curr Biol ; 17(15): 1326-33, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17658259

RESUMO

Hedgehog (HH) is a major secreted morphogen involved in development, stem cell maintenance and oncogenesis [1, 2]. In Drosophila wing imaginal discs, HH produced in the posterior compartment diffuses into the anterior compartment to control target gene transcription via the transcription factor Cubitus interruptus (CI). The first steps in the reception and transduction of the HH signal are mediated by its receptor Patched (PTC) [3] and the seven-transmembrane-domain protein Smoothened (SMO) [4, 5]. PTC and HH control SMO by regulating its stability, trafficking, and phosphorylation (for review, see [6]). SMO interacts directly with the Ser-Thr protein kinase Fused (FU) and the kinesin-related protein Costal2 (COS2), which interact with each other and with CI in an intracellular Hedgehog transducing complex [7-9]. We show here that HH induces FU targeting to the plasma membrane in a SMO-dependent fashion and that, reciprocally, FU controls SMO stability and phosphorylation. FU anchorage to the membrane is sufficient to make it a potent SMO-dependent, PTC-resistant activator of the pathway. These findings reveal a novel positive-feedback loop in HH transduction and are consistent with a model in which FU and SMO, by mutually enhancing each other's activities, sustain high levels of signaling and render the pathway robust to PTC level fluctuations.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened
10.
Dev Biol ; 303(1): 121-33, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17182028

RESUMO

The Hedgehog (HH) signaling pathway is crucial for the development of many organisms and its inappropriate activation is involved in numerous cancers. HH signal controls the traffic and activity of the seven-pass transmembrane protein Smoothened (SMO), leading to the transcriptional regulation of HH-responsive genes. In Drosophila, the intracellular transduction events following SMO activation depend on cytoplasmic multimeric complexes that include the Fused (FU) protein kinase. Here we show that the regulatory domain of FU physically interacts with the last 52 amino acids of SMO and that the two proteins colocalize in vivo to vesicles. The deletion of this region of SMO leads to a constitutive activation of SMO, promoting the ectopic transcription of HH target genes. This activation is partially dependent of FU activity. Thus, we identify a novel link between SMO and the cytoplasmic complex(es) and reveal a negative role of the SMO C-terminal region that interacts with FU. We propose that FU could act as a switch, activator in presence of HH signal or inhibitor in absence of HH.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica/genética , Proteínas Hedgehog/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Primers do DNA , Proteínas de Drosophila/genética , Microscopia de Fluorescência , Modelos Biológicos , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened , Técnicas do Sistema de Duplo-Híbrido , Asas de Animais/embriologia
11.
Microbiology (Reading) ; 152(Pt 3): 695-708, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16514150

RESUMO

Rgd1, a GTPase-activating protein, is the only known negative regulator of the Rho3 and Rho4 small GTPases in the yeast Saccharomyces cerevisiae. Rho3p and Rho4p are involved in regulating cell polarity by controlling polarized exocytosis. Co-inactivation of RGD1 and WSC1, which is a cell wall sensor-encoding gene, is lethal. Another plasma membrane sensor, Mid2p, is known to rescue the rgd1Deltawsc1Delta synthetic lethality. It has been proposed that Wsc1p and Mid2p act upstream of the protein kinase C (PKC) pathway to function as mechanosensors of cell wall stress. Analysis of the synthetic lethal phenomenon revealed that production of activated Rho3p and Rho4p leads to lethality in wsc1Delta cells. Inactivation of RHO3 or RHO4 was able to rescue the rgd1Deltawsc1Delta synthetic lethality, supporting the idea that the accumulation of GTP-bound Rho proteins, following loss of Rgd1p, is detrimental if the Wsc1 sensor is absent. In contrast, the genetic interaction between RGD1 and MID2 was not due to an accumulation of GTP-bound Rho proteins. It was proposed that simultaneous inactivation of RGD1 and WSC1 constitutively activates the PKC-mitogen-activated protein kinase (MAP kinase) pathway. Moreover, it was shown that the activity of this pathway was not involved in the synthetic lethal interaction, which suggests the existence of another mechanism. Consistent with this idea, it was found that perturbations in Rho3-mediated polarized exocytosis specifically impair the abundance and processing of Wsc1 and Mid2 proteins. Hence, it is proposed that Wsc1p participates in the regulation of a Rho3/4-dependent cellular mechanism, and that this is distinct from the role of Wsc1p in the PKC-MAP kinase pathway.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Eukaryot Cell ; 4(8): 1375-86, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16087742

RESUMO

The protein kinase C (PKC) pathway is involved in the maintenance of cell shape and cell integrity in Saccharomyces cerevisiae. Here, we show that this pathway mediates tolerance to low pH and that the Bck1 and Slt2 proteins belonging to the mitogen-activated protein kinase cascade are essential for cell survival at low pH. The PKC pathway is activated during acidification of the extracellular environment, and this activation depends mainly on the Mid2p cell wall sensor. Rgd1p, which encodes a Rho GTPase-activating protein for the small G proteins Rho3p and Rho4p, also plays a role in low-pH response. The rgd1Delta strain is sensitive to low pH, and Rgd1p activates the PKC pathway in an acidic environment. Inactivation of both genes in the double mutant rgd1Delta mid2Delta strain renders yeast cells unable to survive at low pH as in bck1Delta and slt2Delta strains. Our data provide evidence for the existence of two distinct ways, one involving Mid2p and the other involving Rgd1p, with both converging to the cell integrity pathway to mediate low-pH tolerance in Saccharomyces cerevisiae. Nevertheless, even if Rgd1p acts on the PKC pathway, it seems that its mediating action on low-pH tolerance is not limited to this pathway. As the Mid2p amount plays a role in rgd1Delta sensitivity to low pH, Mid2p seems to act more like a molecular rheostat, controlling the level of PKC pathway activity and thus allowing phenotypical expression of RGD1 inactivation.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , Parede Celular , Proteínas Ativadoras de GTPase/genética , Genótipo , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Domínio MADS , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Supressão Genética/genética , Temperatura , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Gene ; 351: 159-69, 2005 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-15922872

RESUMO

The RhoGAP Rgd1p is involved in different signal transduction pathways in Saccharomyces cerevisiae through its regulatory activity upon the Rho3 and Rho4 GTPases. The rgd1Delta mutant, which presents a mortality at the entry into the stationary phase in minimal medium, is sensitive to medium acidification caused by biomass augmentation. We showed that low-pH shock leads to abnormal intracellular acidification of the rgd1Delta mutant. Transcriptional regulation of RGD1 was studied in several stress conditions and we observed an activation of RGD1 transcription at low pH and after heat and oxidative shocks. The transcription level at low pH and after heat shock was demonstrated to depend on the STRE box located in the RGD1 promoter. The general stress-activated transcription factors Msn2p and Msn4p as well as the HOG pathway were shown to mainly act on the basal RGD1 transcriptional level in normal and stress conditions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Meios de Cultura/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas Ativadoras de GTPase/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ácido Clorídrico/farmacologia , Concentração de Íons de Hidrogênio , Óperon Lac/genética , Mutação , Fenótipo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , beta-Galactosidase/metabolismo
14.
Biochem Biophys Res Commun ; 318(3): 739-45, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15144901

RESUMO

Helicobacter hepaticus, a causal agent of hepatocarcinoma in mice, exhibits a cytolethal distending toxin activity. The three subunits of this holotoxin, CdtA, CdtB, and CdtC, and three CdtB mutants were produced as recombinant histidine-tagged proteins by using an in vitro cell-free protein expression system. We found that the presence of the three H. hepaticus Cdt subunits is required for cellular toxicity and that only a C-terminal CdtB mutation abolishes the activity of the complex. In vitro, H. hepaticus CdtB exhibits a DNase activity which is also abolished by this C-terminal CdtB mutation. These results suggest that the effect of H. hepaticus CDT probably involves the DNase activity of CdtB.


Assuntos
Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/toxicidade , Helicobacter hepaticus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desoxirribonucleases/metabolismo , Expressão Gênica , Helicobacter hepaticus/genética , Fígado/citologia , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...