Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 5(Pt 6): 681-698, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443353

RESUMO

Hexaferrites are an important class of magnetic oxides with applications in data storage and electronics. Their crystal structures are highly modular, consisting of Fe- or Ba-rich close-packed blocks that can be stacked in different sequences to form a multitude of unique structures, producing large anisotropic unit cells with lattice parameters typically >100 Šalong the stacking axis. This has limited atomic-resolution structure solutions to relatively simple examples such as Ba2Zn2Fe12O22, whilst longer stacking sequences have been modelled only in terms of block sequences, with no refinement of individual atomic coordinates or occupancies. This paper describes the growth of a series of complex hexaferrite crystals, their atomic-level structure solution by high-resolution synchrotron X-ray diffraction, electron diffraction and imaging methods, and their physical characterization by magnetometry. The structures include a new hexaferrite stacking sequence, with the longest lattice parameter of any hexaferrite with a fully determined structure.

2.
Nature ; 546(7657): 280-284, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28593963

RESUMO

The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios. Computational methods have been developed to guide synthesis by predicting structures at specific compositions and predicting compositions for known crystal structures, with notable successes. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them.

3.
Nature ; 525(7569): 363-6, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26381984

RESUMO

Ferroelectric and ferromagnetic materials exhibit long-range order of atomic-scale electric or magnetic dipoles that can be switched by applying an appropriate electric or magnetic field, respectively. Both switching phenomena form the basis of non-volatile random access memory, but in the ferroelectric case, this involves destructive electrical reading and in the magnetic case, a high writing energy is required. In principle, low-power and high-density information storage that combines fast electrical writing and magnetic reading can be realized with magnetoelectric multiferroic materials. These materials not only simultaneously display ferroelectricity and ferromagnetism, but also enable magnetic moments to be induced by an external electric field, or electric polarization by a magnetic field. However, synthesizing bulk materials with both long-range orders at room temperature in a single crystalline structure is challenging because conventional ferroelectricity requires closed-shell d(0) or s(2) cations, whereas ferromagnetic order requires open-shell d(n) configurations with unpaired electrons. These opposing requirements pose considerable difficulties for atomic-scale design strategies such as magnetic ion substitution into ferroelectrics. One material that exhibits both ferroelectric and magnetic order is BiFeO3, but its cycloidal magnetic structure precludes bulk magnetization and linear magnetoelectric coupling. A solid solution of a ferroelectric and a spin-glass perovskite combines switchable polarization with glassy magnetization, although it lacks long-range magnetic order. Crystal engineering of a layered perovskite has recently resulted in room-temperature polar ferromagnets, but the electrical polarization has not been switchable. Here we combine ferroelectricity and ferromagnetism at room temperature in a bulk perovskite oxide, by constructing a percolating network of magnetic ions with strong superexchange interactions within a structural scaffold exhibiting polar lattice symmetries at a morphotropic phase boundary (the compositional boundary between two polar phases with different polarization directions, exemplified by the PbZrO3-PbTiO3 system) that both enhances polarization switching and permits canting of the ordered magnetic moments. We expect this strategy to allow the generation of a range of tunable multiferroic materials.

4.
Angew Chem Int Ed Engl ; 53(18): 4592-6, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24677281

RESUMO

A flexible metal-organic framework selectively sorbs para- (pX) over meta-xylene (mX) by synergic restructuring around pX coupled with generation of unused void space upon mX loading. The nature of the structural change suggests more generally that flexible structures which are initially mismatched in terms of fit and capacity to the preferred guest are strong candidates for effective molecular separations.

5.
Science ; 329(5995): 1053-7, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20798314

RESUMO

Porous materials find widespread application in storage, separation, and catalytic technologies. We report a crystalline porous solid with adaptable porosity, in which a simple dipeptide linker is arranged in a regular array by coordination to metal centers. Experiments reinforced by molecular dynamics simulations showed that low-energy torsions and displacements of the peptides enabled the available pore volume to evolve smoothly from zero as the guest loading increased. The observed cooperative feedback in sorption isotherms resembled the response of proteins undergoing conformational selection, suggesting an energy landscape similar to that required for protein folding. The flexible peptide linker was shown to play the pivotal role in changing the pore conformation.


Assuntos
Dióxido de Carbono/química , Dipeptídeos/química , Zinco/química , Adsorção , Fenômenos Químicos , Cristalização , Difusão , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Porosidade , Pressão , Conformação Proteica , Dobramento de Proteína , Solventes , Termodinâmica , Difração de Raios X
6.
Philos Trans A Math Phys Eng Sci ; 366(1862): 55-62, 2008 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-17827126

RESUMO

The introduction of mixed valency into extended main-group solids is discussed using the example of hole-doped LiBC, where a combination of experimental measurements and density functional theory calculations is used to understand the observed electronic properties in terms of deviation from the expected rigid-band electronic structure behaviour.

7.
Acc Chem Res ; 38(4): 273-82, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15835874

RESUMO

Scientific and technological interest in porous materials with molecule-sized channels and cavities has led to an intense search for controlled chemical routes to systems with specific properties. This Account details our work on directing the assembly of open-framework structures based on molecules and investigating how the response of nanoporous examples of such materials to guests differs from classical rigid porous systems. The stabilization of chiral nanoporosity by a hierarchy of interactions that both direct and maintain a helical open-framework structure exemplifies the approach.

8.
Chem Commun (Camb) ; (12): 1348-9, 2003 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-12841235

RESUMO

The synthesis of Li(x)BC (x > 0.5) by high temperature Li deintercalation from LiBC is demonstrated by refinement of X-ray and neutron powder diffraction data--contrary to theoretical expectation no superconductivity above 2K is observed in these materials.

9.
Chem Commun (Camb) ; (6): 684-5, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12703772

RESUMO

A straightforward synthesis of a transition metal-loaded derivative of the pollucite structure is presented, with non-centric cation ordering over the tetrahedral sites.

10.
Science ; 295(5561): 1882-4, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11884751

RESUMO

We present the synthesis and structural characterization of a transition metal oxide hydride, LaSrCoO3H0.7, which adopts an unprecedented structure in which oxide chains are bridged by hydride anions to form a two-dimensional extended network. The metal centers are strongly coupled by their bonding with both oxide and hydride ligands to produce magnetic ordering at temperatures up to at least 350 kelvin. The synthetic route is sufficiently general to allow the prediction of a new class of transition metal--containing electronic and magnetic materials.

11.
J Am Chem Soc ; 123(43): 10584-94, 2001 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-11673990

RESUMO

The synthesis and characterization of two members of a family of porous magnetic materials is described. The structures of Co4(SO4)(OH)6(C2N2H8)0.5*3H2O and Co4(SO4)(OH)6(C6N2H12)0.5*H2O and their thermal stability can be tailored via the choice of organic pillar. The interactions between the pillaring agent and the compositionally complex inorganic layer are discussed. The influences of two pillaring agents i.e., the flexible ethylenediamine and the relatively rigid 1,4-diazabicyclo[2,2,2]octane, on thermal stability, rigidity upon guest loss, and magnetic behavior of the pillared solids are compared. The magnetism of the pillared layered cobalt hydroxides is complex due to the influences of multiple metal sites, inter- and intralayer exchange, spin-orbit coupling, and geometrical frustration. The wide variety of potential pillars, oxyanions, and possible metal substitutions at the octahedral and tetrahedral sites offers the possibility of tailoring the magnetic and porous properties of these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...