Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 308(10): C803-12, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25980014

RESUMO

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


Assuntos
Angiotensina II/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Hipertensão/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Órgão Subfornical/efeitos dos fármacos , Animais , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
2.
Nat Photonics ; 7(3)2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24353743

RESUMO

Two-photon fluorescence microscopy (2PM)1 enables scientists in various fields including neuroscience2,3, embryology4, and oncology5 to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of 2PM within the mouse brain to the cortical layer, and imaging subcortical structures currently requires the removal of overlying brain tissue3 or the insertion of optical probes6,7. Here we demonstrate non-invasive, high resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy (3PM) at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein (RFP)-labeled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher order nonlinear excitation overcomes the limitations of 2PM, enabling biological investigations to take place at greater depth within tissue.

4.
Exp Physiol ; 98(2): 415-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22962286

RESUMO

In the present study, we used atomic force microscopy (AFM) to examine the ligand-binding properties of α7-containing nicotinic acetylcholine receptors (nAChRs) expressed on neurons from the ventral respiratory group. We also determined the effect of acute and prolonged exposure to nicotine on the binding probability of nAChRs. Neurons from neonatal (postnatal day 5-10) and juvenile rats (3-4 weeks old) were cultured. Internalization of Alexa Fluor 488-conjugated substance P was used to identify respiratory neurons that expressed the neurokinin-1 receptor (NK1-R), a recognized marker of ventral respiratory group neurons. To assess functional changes in nAChRs, AFM probes conjugated with anti-α7 subunit nAChR antibody were used to interact cyclically with the surface of the soma of NK1-R-positive neurons. Measurements were made of the frequency of antibody adhesion to the α7 receptor subunit and of the detachment forces between the membrane-attached receptor and the AFM probe tip. Addition of α-bungarotoxin (a specific antagonist of α7 subunit-containing nAChRs) to the cell bath produced a 69% reduction in binding to the α7 subunit (P < 0.05, n = 10), supporting specificity of binding. Acute exposure to nicotine (1 µM added to culture media) produced an 80% reduction in nAChR antibody binding to the α7 subunit (P < 0.05, n = 9). Prolonged incubation (72 h) of the cell culture in nicotine significantly reduced α7 binding in a concentration-dependent manner. Collectively, these findings demonstrate that AFM is a sensitive tool for assessment of functional changes in nAChRs expressed on the surface of living NK1-R-expressing medullary neurons. Moreover, these data demonstrate that nicotine exposure decreases the binding probability of α7 subunit-containing nAChRs.


Assuntos
Microscopia de Força Atômica , Neurônios/metabolismo , Receptores da Neurocinina-1/metabolismo , Receptores Nicotínicos/metabolismo , Centro Respiratório/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Bungarotoxinas/metabolismo , Bungarotoxinas/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Corantes Fluorescentes/metabolismo , Ligantes , Masculino , Neurônios/efeitos dos fármacos , Nicotina/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/efeitos dos fármacos , Centro Respiratório/citologia , Centro Respiratório/efeitos dos fármacos , Substância P/análogos & derivados , Substância P/metabolismo , Fatores de Tempo , Receptor Nicotínico de Acetilcolina alfa7
5.
Am J Physiol Regul Integr Comp Physiol ; 302(10): R1219-32, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22403798

RESUMO

Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular parameters in response to increasing severities of hypoxia. Retrograde tracers were used to label nTS PVN-projecting neurons and, in some rats, rostral ventrolateral medulla (RVLM)-projecting neurons. Immunohistochemistry was performed to identify nTS cells that were activated (Fos-immunoreactive, Fos-IR), catecholaminergic, and GABAergic following hypoxia. Conscious rats underwent 3 h normoxia (n = 4, 21% O(2)) or acute hypoxia (12, 10, or 8% O(2); n = 5 each). Hypoxia increased ventilation and the number of Fos-IR nTS cells (21%, 13 ± 2; 12%, 58 ± 4; 10%, 166 ± 22; 8%, 186 ± 6). Fos expression after 10% O(2) was similar whether arterial pressure was allowed to decrease (-13 ± 1 mmHg) or was held constant. The percentage of PVN-projecting cells activated was intensity dependent, but contrary to our hypothesis, PVN-projecting nTS cells exhibiting Fos-IR were found at all hypoxic intensities. Notably, at all intensities of hypoxia, ∼75% of the activated PVN-projecting nTS neurons were catecholaminergic. Compared with RVLM-projecting cells, a greater percentage of PVN-projecting nTS cells was activated by 10% O(2). Data suggest that increasing hypoxic intensity activates nTS PVN-projecting cells, especially catecholaminergic, PVN-projecting neurons. The nTS to PVN catecholaminergic pathway may be critical even at lower levels of chemoreflex activation and more important to cardiorespiratory responses than previously considered.


Assuntos
Hipóxia/fisiopatologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Solitário/fisiologia , Animais , Pressão Sanguínea/fisiologia , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/citologia , Fenótipo , Proteínas Proto-Oncogênicas c-fos/fisiologia , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia
6.
J Neurosci ; 31(34): 12318-29, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21865474

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial nTS (mnTS), a region critical for baroreflex control of sympathetic outflow, produced dose-dependent increases in mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (LSNA) that were blocked by the tyrosine kinase inhibitor K252a. In contrast, immunoneutralization of endogenous BDNF (anti-BDNF), or microinjection of K252a alone, decreased MAP, HR, and LSNA. The effects of anti-BDNF were abolished by blockade of ionotropic glutamate receptors, indicating a role for glutamate signaling in the response to BDNF. In vitro, BDNF reduced the amplitude of miniature EPSCs as well as solitary tract (TS) evoked EPSC amplitude and action potential discharge (APD) in second-order nTS neurons. BDNF effects on EPSCs were independent of GABAergic signaling and abolished by AMPA receptor blockade. In contrast, K252a increased spontaneous EPSC frequency and TS evoked EPSC amplitude. BDNF also attenuated APD evoked by injection of depolarizing current into second-order neurons, indicating reduced intrinsic neuronal excitability. Our data demonstrate that BDNF signaling in mnTS plays a tonic role in regulating cardiovascular function, likely via modulation of primary afferent glutamatergic excitatory transmission and neural activity.


Assuntos
Vias Autônomas/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Neurônios/fisiologia , Núcleo Solitário/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA