Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Phys Imaging Radiat Oncol ; 29: 100543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38390588

RESUMO

Background and purpose: Multi-leaf collimators (MLCs) with tilted leaf sides have a complex transmission behaviour that is not easily matched by radiotherapy treatment planning systems (TPSs). We sought to develop an MLC model that can accurately match test fields and clinically relevant plans at different centres. Materials and methods: Two new MLC models were developed and evaluated within a research version of a commercial TPS. Prototype I used adjusted-constant transmissions and Prototype II used variable transmissions at the tongue-and-groove and leaf-tip regions. Three different centres evaluated these prototypes for a tilted MLC and compared them with their initial MLC model using test fields and patient-specific quality-assurance measurements of clinically relevant plans. For the latter, gamma passing rates (GPR) at 2 %/2mm were recorded. Results: For the prototypes the same set of MLC parameters could be used at all centres, with only a slight adjustment of the offset parameter. For centres A and C, average GPR were >95 % and within 0.5 % GPR difference between the standard, and prototype models. In center B, prototypes I and II improved the agreement in clinically relevant plans, with an increase in GPR of 2.3 % ± 0.8 % and 3.0 ± 0.8 %, respectively. Conclusions: The prototype MLC models were either similar or superior to the initial MLC model, and simpler to configure because fewer trade-offs were required. Prototype I performed comparably to the more sophisticated Prototype II and its configuration can be easily standardized, which can be useful to reduce variability and improve safety in clinical practice.

3.
Phys Med ; 114: 103136, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37769414

RESUMO

This study aimed to validate a bespoke 3D-printed phantom for use in quality assurance (QA) of a 6 degrees-of-freedom (6DoF) treatment couch. A novel phantom design comprising a main body with internal cube structures, was fabricated at five centres using Polylactic Acid (PLA) material, with an additional phantom produced incorporating a PLA-stone hybrid material. Correctional setup shifts were determined using image registration by 3D-3D matching of high HU cube structures between obtained cone-beam computer tomography (CBCT) images to reference CTs, containing cubes with fabricated rotational offsets of 3.5°, 1.5° and -2.5° in rotation, pitch, and roll, respectively. Average rotational setup shifts were obtained for each phantom. The reproducibility of 3D-printing was probed by comparing the internal cube size as well as Hounsfield Units between each of the uniquely produced phantoms. For the five PLA phantoms, the average rot, pitch and roll correctional differences from the fabricated offsets were -0.3 ± 0.2°, -0.2 ± 0.5° and 0.2 ± 0.3° respectively, and for the PLA hybrid these differences were -0.09 ± 0.14°, 0.30 ± 0.00° and 0.03 ± 0.10°. There was found to be no statistically significant difference in average cube size between the five PLA printed phantoms, with the significant difference (P < 0.05) in HU of one phantom compared to the others attributed to setup choice and material density. This work demonstrated the capability producing a novel 3D-printed 6DoF couch QA phantom design, at multiple centres, with each unique model capable of sub-degree couch correction.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Reprodutibilidade dos Testes , Radiocirurgia/métodos , Imagens de Fantasmas , Impressão Tridimensional , Poliésteres
4.
Radiother Oncol ; 186: 109775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385376

RESUMO

PURPOSE: To demonstrate the feasibility of characterising MLCs and MLC models implemented in TPSs using a common set of dynamic beams. MATERIALS AND METHODS: A set of tests containing synchronous (SG) and asynchronous sweeping gaps (aSG) was distributed among twenty-five participating centres. Doses were measured with a Farmer-type ion chamber and computed in TPSs, which provided a dosimetric characterisation of the leaf tip, tongue-and-groove, and MLC transmission of each MLC, as well as an assessment of the MLC model in each TPS. Five MLC types and four TPSs were evaluated, covering the most frequent combinations used in radiotherapy departments. RESULTS: Measured differences within each MLC type were minimal, while large differences were found between MLC models implemented in clinical TPSs. This resulted in some concerning discrepancies, especially for the HD120 and Agility MLCs, for which differences between measured and calculated doses for some MLC-TPS combinations exceeded 10%. These large differences were particularly evident for small gap sizes (5 and 10 mm), as well as for larger gaps in the presence of tongue-and-groove effects. A much better agreement was found for the Millennium120 and Halcyon MLCs, differences being within ± 5% and ± 2.5%, respectively. CONCLUSIONS: The feasibility of using a common set of tests to assess MLC models in TPSs was demonstrated. Measurements within MLC types were very similar, but TPS dose calculations showed large variations. Standardisation of the MLC configuration in TPSs is necessary. The proposed procedure can be readily applied in radiotherapy departments and can be a valuable tool in IMRT and credentialing audits.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos
5.
J Appl Clin Med Phys ; 24(6): e14040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37191875

RESUMO

PURPOSE: The Medical Physics Working Group of the Radiation Therapy Study Group at the Japan Clinical Oncology Group is currently developing a virtual audit system for intensity-modulated radiation therapy dosimetry credentialing. The target dosimeters include films and array detectors, such as ArcCHECK (Sun Nuclear Corporation, Melbourne, Florida, USA) and Delta4 (ScandiDos, Uppsala, Sweden). This pilot study investigated the feasibility of our virtual audit system using previously acquired data. METHODS: We analyzed 46 films (32 and 14 in the axial and coronal planes, respectively) from 29 institutions. Global gamma analysis between measured and planned dose distributions used the following settings: 3%/3 mm criteria (the dose denominator was 2 Gy), 30% threshold dose, no scaling of the datasets, and 90% tolerance level. In addition, 21 datasets from nine institutions were obtained for array evaluation. Five institutions used ArcCHECK, while the others used Delta4. Global gamma analysis was performed with 3%/2 mm criteria (the dose denominator was the maximum calculated dose), 10% threshold dose, and 95% tolerance level. The film calibration and gamma analysis were conducted with in-house software developed using Python (version 3.9.2). RESULTS: The means ± standard deviations of the gamma passing rates were 99.4 ± 1.5% (range, 92.8%-100%) and 99.2 ± 1.0% (range, 97.0%-100%) in the film and array evaluations, respectively. CONCLUSION: This pilot study demonstrated the feasibility of virtual audits. The proposed virtual audit system will contribute to more efficient, cheaper, and more rapid trial credentialing than on-site and postal audits; however, the limitations should be considered when operating our virtual audit system.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Projetos Piloto , Japão , Credenciamento , Radiometria , Dosagem Radioterapêutica , Oncologia , Imagens de Fantasmas
6.
Radiother Oncol ; 182: 109494, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708923

RESUMO

BACKGROUND AND PURPOSE: The Global Clinical Trials RTQA Harmonization Group (GHG) set out to evaluate and prioritize clinical trial quality assurance. METHODS: The GHG compiled a list of radiotherapy quality assurance (QA) tests performed for proton and photon therapy clinical trials. These tests were compared between modalities to assess whether there was a need for different types of assessments per modality. A failure modes and effects analysis (FMEA) was performed to assess the risk of each QA failure. RESULTS: The risk analysis showed that proton and photon therapy shared four out of five of their highest-risk failures (end-to-end anthropomorphic phantom test, phantom tests using respiratory motion, pre-treatment patient plan review of contouring/outlining, and on-treatment/post-treatment patient plan review of dosimetric coverage). While similar trends were observed, proton therapy had higher risk failures, driven by higher severity scores. A sub-analysis of occurrence × severity scores identified high-risk scores to prioritize for improvements in RTQA detectability. A novel severity scaler was introduced to account for the number of patients affected by each failure. This scaler did not substantially alter the ranking of tests, but it elevated the QA program evaluation to the top 20th percentile. This is the first FMEA performed for clinical trial quality assurance. CONCLUSION: The identification of high-risk errors associated with clinical trials is valuable to prioritize and reduce errors in radiotherapy and improve the quality of trial data and outcomes, and can be applied to optimize clinical radiotherapy QA.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Prótons , Humanos , Fótons/uso terapêutico , Radiometria , Medição de Risco
7.
Br J Radiol ; 96(1144): 20220650, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475820

RESUMO

The use of volumetric arc therapy and inverse planning has been in routine use in radiotherapy for two decades. However, use in total body irradiation (TBI) has been more recent and few guidelines exist as to how to plan or verify. This has led to heterogeneous approaches. The goal of this review is to provide an overview of current advanced planning and dosimetry verification protocols used in optimised conformal TBI as a basis for investigating the need for greater standardisation in TBI.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Irradiação Corporal Total/métodos
8.
Br J Radiol ; 95(1136): 20201289, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35616646

RESUMO

Modern conformal radiation therapy using techniques such as modulation, image guidance and motion management have changed the face of radiotherapy today offering superior conformity, efficiency, and reproducibility to clinics worldwide. This review assesses the impact of these advanced radiotherapy techniques on patient toxicity and survival rates reported from January 2017 to September 2020. The main aims are to establish if dosimetric and efficiency gains correlate with improved survival and reduced toxicities and to answer the question 'What is the clinical evidence for the most effective implementation of VMAT?'. Compared with 3DCRT, improvements have been reported with VMAT in prostate, locally advanced cervical carcinoma and various head and neck applications, leading to the shift in technology to VMAT. Other sites such as thoracic neoplasms and nasopharyngeal carcinomas have observed some improvement with VMAT although not in line with improved dosimetric measures, and the burden of toxicity and the incidence of cancer related deaths remain high, signaling the need to further mitigate toxicity and increase survival. As technological advancement continues, large randomised long-term clinical trials are required to determine the way-forward and offer site-specific recommendations. These studies are usually expensive and time consuming, therefore utilising pooled real-world data in a prospective nature can be an alternative solution to comprehensively assess the efficacy of modern radiotherapy techniques.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Masculino , Órgãos em Risco , Estudos Prospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes
9.
Radiother Oncol ; 171: 121-128, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461949

RESUMO

BACKGROUND: The quality of radiotherapy delivery has been shown to significantly impact clinical outcomes including patient survival. To identify errors, institutions perform Patient Specific Quality Assurance (PSQA) assessing each individual radiotherapy plan prior to starting patient treatments. Externally administered Dosimetry Audits have found problems despite institutions passing their own PSQA. Hence a new audit concept which assesses the institution's ability to detect errors with their routine PSQA is needed. METHODS: Purposefully introduced edits which simulated treatment delivery errors were embedded into radiation treatment plans of participating institutions. These were designed to produce clinically significant changes yet were mostly within treatment delivery specifications. Actual impact was centrally assessed for each plan. Institutions performed PSQA on each plan, without knowing which contained errors. RESULTS: Seventeen institutions using six radiation treatment planning systems and two delivery systems performed PSQA on twelve plans each. Seventeen erroneous plans (across seven institutions) passed PSQA despite causing >5% increase in spinal cord dose relative to the original plans. Six plans (from four institutions) passed despite a >10% increase. CONCLUSIONS: This novel audit concept evolves beyond testing an institution's ability to deliver a single test case, to increasing the number of errors caught by institutions themselves, thus increasing quality of radiation therapy and impacting every patient treated. Administered remotely this audit also provides advantages in cost, environmental impact, and logistics.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Ensaios Clínicos como Assunto , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica
10.
Radiother Oncol ; 170: 89-94, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35189156

RESUMO

PURPOSE: To update the 2011 ESTRO-EFOMP core curriculum (CC) for education and training of medical physics experts (MPE)s working in radiotherapy (RT), in line with recent EU guidelines, and to provide a framework for European countries to develop their own curriculum. MATERIAL AND METHODS: Since September 2019, 27 European MPEs representing ESTRO, EFOMP and National Societies, with expertise covering all subfields of RT physics, have revised the CC for recent advances in RT. The ESTRO and EFOMP Education Councils, all European National Societies and international stakeholders have been involved in the revision process. RESULTS: A 4-year training period has been proposed, with a total of 240 ECTS (European Credit Transfer and Accumulation System). Training entrance levels have been defined ensuring the necessary physics and mathematics background. The concept of competency-based education has been reinforced by introducing the CanMEDS role framework. The updated CC includes (ablative) stereotactic-, MR-guided- and adaptive RT, particle therapy, advanced automation, complex quantitative data analysis (big data/artificial intelligence), use of biological images, and personalized treatments. Due to the continuously increasing RT complexity, more emphasis has been given to quality management. Clear requirements for a research project ensure a proper preparation of MPE residents for their central role in science and innovation in RT. CONCLUSION: This updated, 3rd edition of the CC provides an MPE training framework for safe and effective practice of modern RT, while acknowledging the significant efforts needed in some countries to reach this level. The CC can contribute to further harmonization of MPE training in Europe.


Assuntos
Inteligência Artificial , Radioterapia (Especialidade) , Currículo , Europa (Continente) , Física Médica/educação , Humanos , Radioterapia (Especialidade)/educação
11.
Phys Imaging Radiat Oncol ; 20: 46-50, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34754954

RESUMO

This study aimed to assess the impact of the margin applied to the clinical target volume, to create the planning target volume, on plan quality of a novel dysphagia-optimised intensity modulated radiotherapy technique developed within a head and neck cancer multicentre randomised controlled trial. Protocol compliant plans were used for a single benchmark planning case. Larger margins were associated with higher doses to adjacent organs at risk, particularly the inferior pharyngeal constrictor muscle, but coincided with some improved low dose target coverage. A 3 mm margin is recommended for this technique if local practices allow.

12.
Phys Imaging Radiat Oncol ; 19: 33-38, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34307916

RESUMO

BACKGROUND AND PURPOSE: Dose delivered during radiotherapy has uncertainty arising from a number of sources including machine calibration, treatment planning and delivery and can impact outcomes. Any systematic uncertainties will impact all patients and can continue for extended periods. The impact on tumour control probability (TCP) of the uncertainties within the radiotherapy calibration process has been assessed. MATERIALS AND METHODS: The linear-quadratic model was used to simulate the TCP from two prostate cancer and a head and neck (H&N) clinical trial. The uncertainty was separated into four components; 1) initial calibration, 2) systematic shift due to output drift, 3) drift during treatment and 4) daily fluctuations. Simulations were performed for each clinical case to model the variation in TCP present at the end of treatment arising from the different components. RESULTS: Overall uncertainty in delivered dose was +/-2.1% (95% confidence interval (CI)), consisting of uncertainty standard deviations of 0.7% in initial calibration, 0.8% due to subsequent calibration shift due to output drift, 0.1% due to drift during treatment, and 0.2% from daily variations. The overall uncertainty of TCP (95% CI) for a population of patients treated on different machines was +/-3%, +/-5%, and +/-3% for simulations based on the two prostate trials and H&N trial respectively. CONCLUSION: The greatest variation in delivered target volume dose arose from calibration shift due to output drift. Careful monitoring of beam output following initial calibration remains vital and may have a significant impact on clinical outcomes.

13.
Phys Imaging Radiat Oncol ; 19: 25-32, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34179522

RESUMO

BACKGROUND AND PURPOSE: The COVID-19 pandemic has imposed changes in radiotherapy (RT) departments worldwide. Medical physicists (MPs) are key healthcare professionals in maintaining safe and effective RT. This study reports on MPs experience during the first pandemic peak and explores the consequences on their work. METHODS: A 39-question survey on changes in departmental and clinical practice and on the impact for the future was sent to the global MP community. A total of 433 responses were analysed by professional role and by country clustered on the daily infection numbers. RESULTS: The impact of COVID-19 was bigger in countries with high daily infection rate. The majority of MPs worked in alternation at home/on-site. Among practice changes, implementation and/or increased use of hypofractionation was the most common (47% of the respondents). Sixteen percent of respondents modified patient-specific quality assurance (QA), 21% reduced machine QA, and 25% moved machine QA to weekends/evenings. The perception of trust in leadership and team unity was reversed between management MPs (towards increased trust and unity) and clinical MPs (towards a decrease). Changes such as home-working and increased use of hypofractionation were welcomed. However, some MPs were concerned about pressure to keep negative changes (e.g. weekend work). CONCLUSION: COVID-19 affected MPs through changes in practice and QA procedures but also in terms of trust in leadership and team unity. Some changes were welcomed but others caused worries for the future. This report forms the basis, from a medical physics perspective, to evaluate long-lasting changes within a multi-disciplinary setting.

14.
Br J Radiol ; 94(1122): 20210001, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882253

RESUMO

OBJECTIVE: The aim of this study was to evaluate the current status of the clinical use of deformable image registration (DIR) in radiotherapy and to gain an understanding of the challenges faced by centres in clinical implementation of DIR, including commissioning and quality assurance (QA), and to determine the barriers faced. The goal was to inform whether additional guidance and QA tools were needed. METHODS: A survey focussed on clinical use, metrics used, how centres would like to use DIR in the future and challenges faced, was designed and sent to 71 radiotherapy centres in the UK. Data were gathered specifically on which centres we using DIR clinically, which applications were being used, what commissioning and QA tests were performed, and what barriers were preventing the integration of DIR into the clinical workflow. Centres that did not use DIR clinically were encouraged to fill in the survey and were asked if they have any future plans and in what timescale. RESULTS: 51 out of 71 (70%) radiotherapy centres responded. 47 centres reported access to a commercial software that could perform DIR. 20 centres already used DIR clinically, and 22 centres had plans to implement an application of DIR within 3 years of the survey. The most common clinical application of DIR was to propagate contours from one scan to another (19 centres). In each of the applications, the types of commissioning and QA tests performed varied depending on the type of application and between centres. Some of the key barriers were determining when a DIR was satisfactory including which metrics to use, and lack of resources. CONCLUSION: The survey results highlighted that there is a need for additional guidelines, training, better tools for commissioning DIR software and for the QA of registration results, which should include developing or recommending which quantitative metrics to use. ADVANCES IN KNOWLEDGE: This survey has given a useful picture of the clinical use and lack of use of DIR in UK radiotherapy centres. The survey provided useful insight into how centres commission and QA DIR applications, especially the variability among centres. It was also possible to highlight key barriers to implementation and determine factors that may help overcome this which include the need for additional guidance specific to different applications, better tools and metrics.


Assuntos
Padrões de Prática Médica/estatística & dados numéricos , Garantia da Qualidade dos Cuidados de Saúde , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Humanos , Dosagem Radioterapêutica , Software , Inquéritos e Questionários , Reino Unido
15.
Phys Med ; 84: 65-71, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33862451

RESUMO

PURPOSE: ESTRO-EFOMP intend to update the core curriculum (CC) for education and training of medical physicists in radiotherapy in line with the European Commission (EC) guidelines on Medical Physics Experts (MPE), the CanMEDS methodology and recent developments in radiotherapy. As input, a survey of the current structure of radiotherapy MPE national training schemes (NTS) in Europe was carried out. METHODS: A 35-question survey was sent to all European medical physics national societies (NS) with a focus on existence of an NTS, its format and duration, required entry-level education, and financial support for trainees. RESULTS: Twenty-six of 36 NS responded. Twenty had an NTS. Minimum required pre-training education varied from BSc in physics or related sciences (5/2) to MSc in medical physics, physics or related sciences (6/5/2) with 50-210 ECTS in fundamental physics and mathematics. The training period varied from 1 to 5 years (median 3 years with 50% dedicated to radiotherapy). The ratio of time spent on university lectures versus hospital training was most commonly 25%/75%. In 14 of 20 countries with an NTS, a research project was mandatory. Residents were paid in 17 of 20 countries. The recognition was mostly obtained by examination. Medical physics is recognised as a healthcare profession in 19 of 26 countries. CONCLUSIONS: The NTS entrance level, duration and curriculum showed significant variations. This survey serves to inform the design of the updated CC to define a realistic minimum training level for safe and effective practice aiming at further harmonization in line with EC guidelines.


Assuntos
Radioterapia (Especialidade) , Currículo , Escolaridade , Europa (Continente) , Física Médica , Humanos
16.
Radiother Oncol ; 159: 106-111, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741471

RESUMO

PURPOSE: To promote consistency in clinical trials by recommending a uniform framework as it relates to radiation transport and dose calculation in water versus in medium. METHODS: The Global Quality Assurance of Radiation Therapy Clinical Trials Harmonisation Group (GHG; www.rtqaharmonization.org) compared the differences between dose to water in water (Dw,w), dose to water in medium (Dw,m), and dose to medium in medium (Dm,m). This was done based on a review of historical frameworks, existing literature and standards, clinical issues in the context of clinical trials, and the trajectory of radiation dose calculations. Based on these factors, recommendations were developed. RESULTS: No framework was found to be ideal or perfect given the history, complexity, and current status of radiation therapy. Nevertheless, based on the evidence available, the GHG established a recommendation preferring dose to medium in medium (Dm,m). CONCLUSIONS: Dose to medium in medium (Dm,m) is the preferred dose calculation and reporting framework. If an institution's planning system can only calculate dose to water in water (Dw,w), this is acceptable.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Água , Consenso , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
18.
Radiother Oncol ; 153: 7-14, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039425

RESUMO

Medical physics has made considerable contributions to recent advances in radiation oncology. Medical physicists are key players in the clinical and scientific radiation oncology context due to their unique skill sets, flexibility, clinical involvement and intrinsic translational character. The continuing development and widespread adoption of "high-tech" radiotherapy has led to an increased need for medical physics involvement. More recently, our field is rapidly changing towards an era of "precision oncology". These changes have opened new challenges for the definition of the professional and scientific roles and responsibilities of medical physicists. In this paper, we have identified four grand challenges of medical physics in radiation oncology: (1) improving target volume definition, (2) adoption of artificial intelligence and automation, (3) development of predictive models of biological effects for precision medicine, and (4) need for leadership. New visions and suggestions to orientate medical physics to successfully face these new challenges are summarized. We foresee that the scientific and professional challenges of our times are pushing medical physicists to accelerate toward multidisciplinarity. Medical physicists are expected to innovatively drive interactions and collaborations with other specialists outside radiation oncology while the radiation physics core will remain central. Medical physicists will retain strong and pivotal roles in quality, safety and in managing ever more complex technologies. The new challenges will require medical physicists to continuously update skills and innovate education, adapt curricula to include new fields, reinforce multi-disciplinary attitude and spirit of innovation. These challenges require visionary and open leadership, which is able to merge established roles with the exciting new fields where medical physics should increasingly contribute.


Assuntos
Radioterapia (Especialidade) , Inteligência Artificial , Currículo , Física Médica , Humanos , Medicina de Precisão , Radioterapia (Especialidade)/educação
19.
Phys Med Biol ; 65(23)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32998112

RESUMO

Tissue mimicking materials (TMMs), typically contained within phantoms, have been used for many decades in both imaging and therapeutic applications. This review investigates the specifications that are typically being used in development of the latest TMMs. The imaging modalities that have been investigated focus around CT, mammography, SPECT, PET, MRI and ultrasound. Therapeutic applications discussed within the review include radiotherapy, thermal therapy and surgical applications. A number of modalities were not reviewed including optical spectroscopy, optical imaging and planar x-rays. The emergence of image guided interventions and multimodality imaging have placed an increasing demand on the number of specifications on the latest TMMs. Material specification standards are available in some imaging areas such as ultrasound. It is recommended that this should be replicated for other imaging and therapeutic modalities. Materials used within phantoms have been reviewed for a series of imaging and therapeutic applications with the potential to become a testbed for cross-fertilization of materials across modalities. Deformation, texture, multimodality imaging and perfusion are common themes that are currently under development.


Assuntos
Imageamento por Ressonância Magnética , Imagem Multimodal , Mamografia , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único
20.
Radiother Oncol ; 150: 30-39, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504762

RESUMO

BACKGROUND AND PURPOSE: The Global Quality Assurance of Radiation Therapy Clinical Trials Harmonization Group (GHG) is a collaborative group of Radiation Therapy Quality Assurance (RTQA) Groups harmonizing and improving RTQA for multi-institutional clinical trials. The objective of the GHG OAR Working Group was to unify OAR contouring guidance across RTQA groups by compiling a single reference list of OARs in line with AAPM TG 263 and ASTRO, together with peer-reviewed, anatomically defined contouring guidance for integration into clinical trial protocols independent of the radiation therapy delivery technique. MATERIALS AND METHODS: The GHG OAR Working Group comprised of 22 multi-professional members from 6 international RTQA Groups and affiliated organizations conducted the work in 3 stages: (1) Clinical trial documentation review and identification of structures of interest (2) Review of existing contouring guidance and survey of proposed OAR contouring guidance (3) Review of survey feedback with recommendations for contouring guidance with standardized OAR nomenclature. RESULTS: 157 clinical trials were examined; 222 OAR structures were identified. Duplicates, non-anatomical, non-specific, structures with more specific alternative nomenclature, and structures identified by one RTQA group were excluded leaving 58 structures of interest. 6 OAR descriptions were accepted with no amendments, 41 required minor amendments, 6 major amendments, 20 developed as a result of feedback, and 5 structures excluded in response to feedback. The final GHG consensus guidance includes 73 OARs with peer-reviewed descriptions (Appendix A). CONCLUSION: We provide OAR descriptions with standardized nomenclature for use in clinical trials. A more uniform dataset supports the delivery of clinically relevant and valid conclusions from clinical trials.


Assuntos
Órgãos em Risco , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador , Ensaios Clínicos como Assunto , Consenso , Estudos Multicêntricos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...