Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 173, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608375

RESUMO

BACKGROUND: Health outcomes among children born prematurely are known to be sexually dimorphic, with male infants often more affected, yet the mechanism behind this observation is not clear. CpG methylation levels in the placenta and blood also differ by sex and are associated with adverse health outcomes. We contrasted CpG methylation levels in the placenta and neonatal blood (n = 358) from the Extremely Low Gestational Age Newborn (ELGAN) cohort based on the EPIC array, which assays over 850,000 CpG sites across the epigenome. Sex-specific epigenome-wide association analyses were conducted for the placenta and neonatal blood samples independently, and the results were compared to determine tissue-specific differences between the methylation patterns in males and females. All models were adjusted for cell type heterogeneity. Enrichment pathway analysis was performed to identify the biological functions of genes related to the sexually dimorphic CpG sites. RESULTS: Approximately 11,500 CpG sites were differentially methylated in relation to sex. Of these, 5949 were placenta-specific and 5361 were blood-specific, with only 233 CpG sites overlapping in both tissues. For placenta-specific CpG sites, 90% were hypermethylated in males. For blood-specific CpG sites, 95% were hypermethylated in females. In the placenta, keratinocyte differentiation biological pathways were enriched among the differentially methylated genes. No enrichment pathways were observed for blood. CONCLUSIONS: Distinct methylation patterns were observed between male and female children born extremely premature, and keratinocyte differentiation pathways were enriched in the placenta. These findings provide new insights into the epigenetic mechanisms underlying sexually dimorphic health outcomes among extremely premature infants.


Assuntos
Epigênese Genética , Lactente Extremamente Prematuro , Recém-Nascido , Criança , Lactente , Gravidez , Humanos , Feminino , Masculino , Metilação , Epigenoma , Parto
2.
Autism Res ; 16(5): 918-934, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36938998

RESUMO

Children born preterm are at heightened risk of neurodevelopmental impairments, including Autism Spectrum Disorder (ASD). The placenta is a key regulator of neurodevelopmental processes, though the precise underlying molecular mechanisms remain unclear. Here, we employed a multi-omic approach to identify placental transcriptomic and epigenetic modifications related to ASD diagnosis at age 10, among children born preterm. Working with the extremely low gestational age (ELGAN) cohort, we hypothesized that a pro-inflammatory placental environment would be predictive of ASD diagnosis at age 10. Placental messenger RNA (mRNA) expression, CpG methylation, and microRNA (miRNA) expression were compared among 368 ELGANs (28 children diagnosed with ASD and 340 children without ASD). A total of 111 genes displayed expression levels in the placenta that were associated with ASD. Within these ASD-associated genes is an ASD regulatory complex comprising key genes that predicted ASD case status. Genes with expression that predicted ASD case status included Ewing Sarcoma Breakpoint Region 1 (EWSR1) (OR: 6.57 (95% CI: 2.34, 23.58)) and Bromodomain Adjacent To Zinc Finger Domain 2A (BAZ2A) (OR: 0.12 (95% CI: 0.03, 0.35)). Moreover, of the 111 ASD-associated genes, nine (8.1%) displayed associations with CpG methylation levels, while 14 (12.6%) displayed associations with miRNA expression levels. Among these, LRR Binding FLII Interacting Protein 1 (LRRFIP1) was identified as being under the control of both CpG methylation and miRNAs, displaying an OR of 0.42 (95% CI: 0.17, 0.95). This gene, as well as others identified as having functional epimutations, plays a critical role in immune system regulation and inflammatory response. In summary, a multi-omic approach was used to identify functional epimutations in the placenta that are associated with the development of ASD in children born preterm, highlighting future avenues for intervention.


Assuntos
Transtorno do Espectro Autista , MicroRNAs , Recém-Nascido , Humanos , Criança , Gravidez , Feminino , Transtorno do Espectro Autista/diagnóstico , Placenta/metabolismo , Multiômica , Epigênese Genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo
3.
Epigenetics ; 17(13): 2389-2403, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36134874

RESUMO

Social determinants of health (SDoH) are defined as the conditions in which people are born, grow, live, work, and age. The distribution of these conditions is influenced by underlying structural factors and may be linked to adverse pregnancy outcomes through epigenetic modifications of gestational tissues. A promising modification is epigenetic gestational age (eGA), which captures 'biological' age at birth. Measuring eGA in placenta, an organ critical for foetal development, may provide information about how SDoH 'get under the skin' during pregnancy to influence birth outcomes and ethnic/racial disparities. We examined relationships of placental eGA with sociodemographic factors, smoking, and two key clinical outcomes: Apgar scores and NICU length of stay. Using the Robust Placental Clock, we estimated eGA for placental samples from the Extremely Low Gestational Age Newborns cohort (N = 408). Regression modelling revealed smoking during pregnancy was associated with placental eGA acceleration (i.e., eGA higher than chronologic gestational age). This association differed by maternal race: among infants born to mothers racialized as Black, we observed greater eGA acceleration (+0.89 week, 95% CI: 0.38, 1.40) as compared to those racialized as white (+0.27 week, 95% CI: -0.06, 0.59). Placental eGA acceleration was also correlated with shorter NICU lengths of stay, but only among infants born to mothers racialized as Black (-0.08 d/week-eGA, 95% CI: -0.12, -0.05). Together, these observed associations suggest that interpretations of epigenetic gestational aging may be tissue-specific.


Assuntos
Lactente Extremamente Prematuro , Placenta , Lactente , Humanos , Recém-Nascido , Gravidez , Feminino , Fatores Sociodemográficos , Metilação de DNA , Idade Gestacional , Resultado da Gravidez , Fumar/genética , Epigênese Genética , Envelhecimento
4.
Environ Health ; 21(1): 68, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836250

RESUMO

BACKGROUND: Inorganic arsenic (iAs) is a ubiquitous metalloid and drinking water contaminant. Prenatal exposure is associated with birth outcomes across multiple studies. During metabolism, iAs is sequentially methylated to mono- and di-methylated arsenical species (MMAs and DMAs) to facilitate whole body clearance. Inefficient methylation (e.g., higher urinary % MMAs) is associated with increased risk of certain iAs-associated diseases. One-carbon metabolism factors influence iAs methylation, modifying toxicity in adults, and warrant further study during the prenatal period. The objective of this study was to evaluate folate, vitamin B12, and homocysteine as modifiers of the relationship between biomarkers of iAs methylation efficiency and birth outcomes. METHODS: Data from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort (2011-2012)  with maternal urine and cord serum arsenic biomarkers and maternal serum folate, vitamin B12, and homocysteine concentrations were utilized. One-carbon metabolism factors were dichotomized using clinical cutoffs and median splits. Multivariable linear regression models were fit to evaluate associations between each biomarker and birth outcome overall and within levels of one-carbon metabolism factors. Likelihood ratio tests of full and reduced models were used to test the significance of statistical interactions on the additive scale (α = 0.10). RESULTS: Among urinary biomarkers, % U-MMAs was most strongly associated with birth weight (ß = - 23.09, 95% CI: - 44.54, - 1.64). Larger, more negative mean differences in birth weight were observed among infants born to women who were B12 deficient (ß = - 28.69, 95% CI: - 53.97, - 3.42) or experiencing hyperhomocysteinemia (ß = - 63.29, 95% CI: - 154.77, 28.19). Generally, mean differences in birth weight were attenuated among infants born to mothers with higher serum concentrations of folate and vitamin B12 (or lower serum concentrations of homocysteine). Effect modification by vitamin B12 and homocysteine was significant on the additive scale for some associations. Results for gestational age were less compelling, with an approximate one-week mean difference associated with C-tAs (ß = 0.87, 95% CI: 0, 1.74), but not meaningful otherwise. CONCLUSIONS: Tissue distributions of iAs and its metabolites (e.g., % MMAs) may vary according to serum concentrations of folate, vitamin B12 and homocysteine during pregnancy. This represents a potential mechanism through which maternal diet may modify the harms of prenatal exposure to iAs.


Assuntos
Arsênio , Arsenicais , Efeitos Tardios da Exposição Pré-Natal , Adulto , Arsênio/toxicidade , Biomarcadores/metabolismo , Peso ao Nascer , Carbono , Feminino , Ácido Fólico , Homocisteína , Humanos , Metilação , Gravidez , Vitamina B 12
5.
Sci Rep ; 11(1): 15743, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344912

RESUMO

Pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and neonatal health outcomes, with differences in risk observed between sexes. Given that the placenta is a sexually dimorphic organ and critical regulator of development, examining differences in placental mRNA and miRNA expression in relation to pre-pregnancy BMI may provide insight into responses to maternal BMI in utero. Here, genome-wide mRNA and miRNA expression levels were assessed in the placentas of infants born extremely preterm. Differences in expression were evaluated according to pre-pregnancy BMI status (1) overall and (2) in male and female placentas separately. Overall, 719 mRNAs were differentially expressed in relation to underweight status. Unexpectedly, no genes were differentially expressed in relation to overweight or obese status. In male placentas, 572 mRNAs were associated with underweight status, with 503 (70%) overlapping genes identified overall. Notably, 43/572 (8%) of the mRNAs associated with underweight status in male placentas were also gene targets of two miRNAs (miR-4057 and miR-128-1-5p) associated with underweight status in male placentas. Pathways regulating placental nutrient metabolism and angiogenesis were among those enriched in mRNAs associated with underweight status in males. This study is among the first to highlight a sexually dimorphic response to low pre-pregnancy BMI in the placenta.


Assuntos
Índice de Massa Corporal , MicroRNAs/genética , Obesidade/fisiopatologia , Placenta/patologia , RNA Mensageiro/metabolismo , Caracteres Sexuais , Magreza/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Placenta/metabolismo , Gravidez , RNA Mensageiro/genética , Adulto Jovem
6.
Toxicol Sci ; 183(2): 269-284, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34255065

RESUMO

Molecular signatures are being increasingly integrated into predictive biology applications. However, there are limited studies comparing the overall predictivity of transcriptomic versus epigenomic signatures in relation to perinatal outcomes. This study set out to evaluate mRNA and microRNA (miRNA) expression and cytosine-guanine dinucleotide (CpG) methylation signatures in human placental tissues and relate these to perinatal outcomes known to influence maternal/fetal health; namely, birth weight, placenta weight, placental damage, and placental inflammation. The following hypotheses were tested: (1) different molecular signatures will demonstrate varying levels of predictivity towards perinatal outcomes, and (2) these signatures will show disruptions from an example exposure (ie, cadmium) known to elicit perinatal toxicity. Multi-omic placental profiles from 390 infants in the Extremely Low Gestational Age Newborns cohort were used to develop molecular signatures that predict each perinatal outcome. Epigenomic signatures (ie, miRNA and CpG methylation) consistently demonstrated the highest levels of predictivity, with model performance metrics including R2 (predicted vs observed) values of 0.36-0.57 for continuous outcomes and balanced accuracy values of 0.49-0.77 for categorical outcomes. Top-ranking predictors included miRNAs involved in injury and inflammation. To demonstrate the utility of these predictive signatures in screening of potentially harmful exogenous insults, top-ranking miRNA predictors were analyzed in a separate pregnancy cohort and related to cadmium. Key predictive miRNAs demonstrated altered expression in association with cadmium exposure, including miR-210, known to impact placental cell growth, blood vessel development, and fetal weight. These findings inform future predictive biology applications, where additional benefit will be gained by including epigenetic markers.


Assuntos
MicroRNAs , Metilação de DNA , Fosfatos de Dinucleosídeos/metabolismo , Feminino , Humanos , Recém-Nascido , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Gravidez
7.
Sci Total Environ ; 775: 145759, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33611182

RESUMO

Exposure to wildfire smoke continues to be a growing threat to public health, yet the chemical components in wildfire smoke that primarily drive toxicity and associated disease are largely unknown. This study utilized a suite of computational approaches to identify groups of chemicals induced by variable biomass burn conditions that were associated with biological responses in the mouse lung, including pulmonary immune response and injury markers. Smoke condensate samples were collected and characterized, resulting in chemical distribution information for 86 constituents across ten different exposures. Mixtures-relevant statistical methods included (i) a chemical clustering and data-reduction method, weighted chemical co-expression network analysis (WCCNA), (ii) a quantile g-computation approach to address the joint effect of multiple chemicals in different groupings, and (iii) a correlation analysis to compare mixtures modeling results against individual chemical relationships. Seven chemical groups were identified using WCCNA based on co-occurrence showing both positive and negative relationships with biological responses. A group containing methoxyphenols (e.g., coniferyl aldehyde, eugenol, guaiacol, and vanillin) displayed highly significant, negative relationships with several biological responses, including cytokines and lung injury markers. This group was further shown through quantile g-computation methods to associate with reduced biological responses. Specifically, mixtures modeling based on all chemicals excluding those in the methoxyphenol group demonstrated more significant, positive relationships with several biological responses; whereas mixtures modeling based on just those in the methoxyphenol group demonstrated significant negative relationships with several biological responses, suggesting potential protective effects. Mixtures-based analyses also identified other groups consisting of inorganic elements and ionic constituents showing positive relationships with several biological responses, including markers of inflammation. Many of the effects identified through mixtures modeling in this analysis were not captured through individual chemical analyses. Together, this study demonstrates the utility of mixtures-based approaches to identify potential drivers and inhibitors of toxicity relevant to wildfire exposures.


Assuntos
Fumaça , Incêndios Florestais , Animais , Análise por Conglomerados , Camundongos , Fumaça/efeitos adversos
8.
Reprod Toxicol ; 96: 221-230, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32721520

RESUMO

Birth weight (BW) represents an important clinical and toxicological measure, indicative of the overall health of the newborn as well as potential risk for later-in-life outcomes. BW can be influenced by endogenous and exogenous factors and is known to be heavily impacted in utero by the health and function of the placenta. An aspect that remains understudied is the influence of genomic and epigenomic programming within the placenta on infant BW. To address this gap, we set out to test the hypothesis that genes involved in critical placental cell signaling are associated with infant BW, and are likely regulated, in part, through epigenetic mechanisms based on microRNA (miRNA) mediation. This study leveraged a robust dataset based on 390 infants born at low gestational age (ranged 23-27 weeks) to evaluate genome-wide expression profiles of both mRNAs and miRNAs in placenta tissues and relate these to infant BW. A total of 254 mRNAs and 268 miRNAs were identified as associated with BW, the majority of which showed consistent associations across placentas derived from both males and females. BW-associated mRNAs were found to be enriched for important biological pathways, including glycoprotein VI (the major receptor for collagen), human growth, and hepatocyte growth factor signaling, a portion of which were predicted to be regulated by BW-associated miRNAs. These miRNA-regulated pathways highlight key mechanisms potentially linking endogenous/exogenous factors to changes in birth outcomes that may be deleterious to infant and later-in-life health.


Assuntos
Peso ao Nascer/genética , MicroRNAs , Placenta/metabolismo , RNA Mensageiro , Adolescente , Adulto , Colágeno/genética , Feminino , Expressão Gênica , Genômica , Fator de Crescimento de Hepatócito/genética , Hormônio do Crescimento Humano/genética , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Glicoproteínas da Membrana de Plaquetas/genética , Gravidez , Transdução de Sinais , Adulto Jovem
9.
Epigenetics ; 14(11): 1102-1111, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31216936

RESUMO

The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that in utero and early life conditions can disrupt normal fetal development and program susceptibility to later-life disease. Metastable epialleles are genomic loci in which CpG methylation patterning is responsive to maternal diet and conserved across time and tissues. Thus, these sites could serve as 'signatures' of gestational environment conditions. Here, we sought to determine if methylation of metastable epialleles was associated with changes in childhood body mass index (BMI) z-scores across ages one, two and ten in the Extremely Low Gestational Age Newborns (ELGAN) cohort. CpG methylation of 250 probes (corresponding to 111 genes) within metastable epiallele regions was measured in placental tissue. Linear mixed effects models were fit to evaluate the overall and sex-stratified associations between methylation and changes in BMI z-score over time. In total, 26 probes were associated (p < 0.05) with changes in BMI z-score overall, including probes within Mesoderm Specific Transcript (MEST) and Histone Deacetylase 4 (HDAC4), which have previously been associated with childhood obesity and adipogenesis. Sex-stratified analyses revealed a significant association, after adjusting for multiple comparisons (q < 0.05), within female placentas for one probe annotated to the imprinted gene PLAG1 Like Zinc Finger 1 (PLAGL1). These findings suggest epigenetic marks may be involved in programming susceptibility to obesity in utero and highlight the potential to use placental tissues in predicting growth rate trajectories among premature infants.


Assuntos
Índice de Massa Corporal , Metilação de DNA , Epigênese Genética , Recém-Nascido de muito Baixo Peso/crescimento & desenvolvimento , Placenta/metabolismo , Adulto , Alelos , Ilhas de CpG , Feminino , Loci Gênicos , Humanos , Recém-Nascido , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...