Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712068

RESUMO

Germinal center (GC) B cells segregate into three subsets that compartmentalize the antagonistic molecular programs of selection, proliferation, and somatic hypermutation. In bone marrow, the epigenetic reader BRWD1 orchestrates and insulates the sequential stages of cell proliferation and Igk recombination. We hypothesized BRWD1 might play similar insulative roles in the periphery. In Brwd1 -/- follicular B cells, GC initiation and class switch recombination following immunization were inhibited. In contrast, in Brwd1 -/- GC B cells there was admixing of chromatin accessibility across GC subsets and transcriptional dysregulation including induction of inflammatory pathways. This global molecular GC dysregulation was associated with specific defects in proliferation, affinity maturation, and tolerance. These data suggest that GC subset identity is required for some but not all GC-attributed functions. Furthermore, these data demonstrate a central role for BRWD1 in orchestrating epigenetic transitions at multiple steps along B cell developmental and activation pathways.

2.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260318

RESUMO

The rapid development of highly multiplexed microscopy systems has enabled the study of cells embedded within their native tissue, which is providing exciting insights into the spatial features of human disease [1]. However, computational methods for analyzing these high-content images are still emerging, and there is a need for more robust and generalizable tools for evaluating the cellular constituents and underlying stroma captured by high-plex imaging [2]. To address this need, we have adapted spectral angle mapping - an algorithm used widely in hyperspectral image analysis - to compress the channel dimension of high-plex immunofluorescence images. As many high-plex immunofluorescence imaging experiments probe unique sets of protein markers, existing cell and pixel classification models do not typically generalize well. Pseudospectral angle mapping (pSAM) uses reference pseudospectra - or pixel vectors - to assign each pixel in an image a similarity score to several cell class reference vectors, which are defined by each unique staining panel. Here, we demonstrate that the class maps provided by pSAM can directly provide insight into the prevalence of each class defined by reference pseudospectra. In a dataset of high-plex images of colon biopsies from patients with gut autoimmune conditions, sixteen pSAM class representation maps were combined with instance segmentation of cells to provide cell class predictions. Finally, pSAM detected a diverse set of structure and immune cells when applied to a novel dataset of kidney biopsies imaged with a 43-marker panel. In summary, pSAM provides a powerful and readily generalizable method for evaluating high-plex immunofluorescence image data.

3.
Nat Immunol ; 25(1): 129-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985858

RESUMO

Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear. Here we demonstrate that in small pre-B cells, the lineage and stage-specific epigenetic reader bromodomain and WD repeat-containing protein 1 (BRWD1) reorders three-dimensional chromatin topology to affect the transition between proliferative and gene recombination molecular programs. BRWD1 regulated the switch between poised and active enhancers interacting with promoters, and coordinated this switch with Igk locus contraction. BRWD1 did so by converting chromatin-bound static to dynamic cohesin competent to mediate long-range looping. ATP-depletion revealed cohesin conversion to be the main energetic mechanism dictating dynamic chromatin looping. Our findings provide a new mechanism of cohesin regulation and reveal how cohesin function can be dictated by lineage contextual mechanisms to facilitate specific cell fate transitions.


Assuntos
Cromatina , Coesinas , Cromatina/genética , Células Precursoras de Linfócitos B , Regulação da Expressão Gênica , Diferenciação Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Cell ; 186(24): 5269-5289.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995656

RESUMO

A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.


Assuntos
Cromatina , Genoma , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Humanos , Animais , Camundongos
6.
Trends Immunol ; 44(9): 668-677, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573227

RESUMO

In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation. We propose a three-zone model of the GC that describes how proliferation and mutation are regulated. Using this model, we consider how recent mechanistic discoveries in B cell progenitors inform models of GC B cell function and reveal fundamental mechanisms underpinning humoral immunity, autoimmunity, and lymphomagenesis.


Assuntos
Linfócitos B , Centro Germinativo , Humanos , Animais , Dano ao DNA , Cromatina , Proliferação de Células , Mamíferos
7.
Cell Rep ; 42(5): 112512, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37200190

RESUMO

Germinal centers (GCs), sites of antibody affinity maturation, are organized into dark (DZ) and light (LZ) zones. Here, we show a B cell-intrinsic role for signal transducer and activator of transcription 3 (STAT3) in GC DZ and LZ organization. Altered zonal organization of STAT3-deficient GCs dampens development of long-lived plasma cells (LL-PCs) but increases memory B cells (MBCs). In an abundant antigenic environment, achieved here by prime-boost immunization, STAT3 is not required for GC initiation, maintenance, or proliferation but is important for sustaining GC zonal organization by regulating GC B cell recycling. Th cell-derived signals drive STAT3 tyrosine 705 and serine 727 phosphorylation in LZ B cells, regulating their recycling into the DZ. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses identified STAT3 regulated genes that are critical for LZ cell recycling and transiting through DZ proliferation and differentiation phases. Thus, STAT3 signaling in B cells controls GC zone organization and recycling, and GC egress of PCs, but negatively regulates MBC output.


Assuntos
Linfócitos B , Fator de Transcrição STAT3 , Centro Germinativo , Plasmócitos , Transdução de Sinais
8.
medRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214861

RESUMO

Interstitial lung diseases (ILD) are heterogeneous conditions that may lead to progressive fibrosis and death of affected individuals. Despite diversity in clinical manifestations, enlargement of lung-associated lymph nodes (LLN) in fibrotic ILD patients predicts worse survival. Herein, we revealed a common adaptive immune landscape in LLNs of all ILD patients, characterized by highly activated germinal centers and antigen-activated T cells including regulatory T cells (Tregs). In support of these findings, we identified serum reactivity to 17 candidate auto-antigens in ILD patients through a proteome-wide screening using phage immunoprecipitation sequencing. Autoantibody responses to actin binding LIM protein 1 (ABLIM1), a protein highly expressed in aberrant basaloid cells of fibrotic lungs, were correlated with LLN frequencies of T follicular helper cells and Tregs in ILD patients. Together, we demonstrate that end-stage ILD patients have converging immune mechanisms, in part driven by antigen-specific immune responses, which may contribute to disease progression.

9.
Nat Immunol ; 24(3): 487-500, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759711

RESUMO

The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.


Assuntos
Linfócitos T CD4-Positivos , Células T Auxiliares Foliculares , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Autoimunidade , Diferenciação Celular , Células Clonais , Fenótipo , Linfócitos T Auxiliares-Indutores , Linfócitos T CD4-Positivos/imunologia
10.
Sci Adv ; 9(5): eadf8156, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724234

RESUMO

The kidney is a comparatively hostile microenvironment characterized by highsodium concentrations; however, lymphocytes infiltrate and survive therein in autoimmune diseases such as lupus. The effects of sodium-lymphocyte interactions on tissue injury in autoimmune diseases and the mechanisms used by infiltrating lymphocytes to survive the highsodium environment of the kidney are not known. Here, we show that kidney-infiltrating B cells in lupus adapt to elevated sodium concentrations and that expression of sodium potassium adenosine triphosphatase (Na+-K+-ATPase) correlates with the ability of infiltrating cells to survive. Pharmacological inhibition of Na+-K+-ATPase and genetic knockout of Na+-K+-ATPase γ subunit resulted in reduced B cell infiltration into kidneys and amelioration of proteinuria. B cells in human lupus nephritis biopsies also had high expression of Na+-K+-ATPase. Our study reveals that kidney-infiltrating B cells in lupus initiate a tissue adaption program in response to sodium stress and identifies Na+-K+-ATPase as an organ-specific therapeutic target.


Assuntos
Linfócitos B , Rim , Nefrite Lúpica , ATPase Trocadora de Sódio-Potássio , Humanos , Sobrevivência Celular , Rim/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Linfócitos B/enzimologia , Linfócitos B/imunologia
11.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36194494

RESUMO

Expression of the transcription factor interferon regulatory factor 4 (IRF4) is required for the development of lung conventional DCs type 2 (cDC2s) that elicit Th2 responses, yet how IRF4 functions in lung cDC2s throughout the acute and memory allergic response is not clear. Here, we used a mouse model that loses IRF4 expression after lung cDC2 development to demonstrate that mice with IRF4-deficient DCs display impaired memory responses to allergen. This defect in the memory response was a direct result of ineffective Th2 induction and impaired recruitment of activated effector T cells to the lung after sensitization. IRF4-deficient DCs demonstrated defects in their migration to the draining lymph node and in T cell priming. Finally, T cells primed by IRF4-competent DCs mediated potent memory responses independently of IRF4-expressing DCs, demonstrating that IRF4-expressing DCs are not necessary during the memory response. Thus, IRF4 controlled a program in mature DCs governing Th2 priming and effector responses, but IRF4-expressing DCs were dispensable during tissue-resident memory T cell-dependent memory responses.


Assuntos
Células Dendríticas , Fatores Reguladores de Interferon , Células T de Memória , Animais , Camundongos , Alérgenos , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Pulmão/patologia , Células T de Memória/imunologia , Células Th2 , Memória Imunológica
12.
Sci Immunol ; 7(74): eabm1664, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930652

RESUMO

During B lymphopoiesis, B cell progenitors progress through alternating and mutually exclusive stages of clonal expansion and immunoglobulin (Ig) gene rearrangements. Great diversity is generated through the stochastic recombination of Ig gene segments encoding heavy and light chain variable domains. However, this commonly generates autoreactivity. Receptor editing is the predominant tolerance mechanism for self-reactive B cells in the bone marrow (BM). B cell receptor editing rescues autoreactive B cells from negative selection through renewed light chain recombination first at Igκ then Igλ loci. Receptor editing depends on BM microenvironment cues and key transcription factors such as NF-κB, FOXO, and E2A. The specific BM factor required for receptor editing is unknown. Furthermore, how transcription factors coordinate these developmental programs to promote usage of the λ chain remains poorly defined. Therefore, we used two mouse models that recapitulate pathways by which Igλ light chain-positive B cells develop. The first has deleted J kappa (Jκ) genes and hence models Igλ expression resulting from failed Igκ recombination (Igκdel). The second models autoreactivity by ubiquitous expression of a single-chain chimeric anti-Igκ antibody (κ-mac). Here, we demonstrated that autoreactive B cells transit asymmetric forward and reverse developmental trajectories. This imparted a unique epigenetic landscape on small pre-B cells, which opened chromatin to transcription factors essential for Igλ recombination. The consequences of this asymmetric developmental path were both amplified and complemented by CXCR4 signaling. These findings reveal how intrinsic molecular programs integrate with extrinsic signals to drive receptor editing.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Animais , Cromatina/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos B/genética , Recombinação Genética , Fatores de Transcrição/genética
13.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608910

RESUMO

BACKGROUNDIn human lupus nephritis (LN), tubulointerstitial inflammation (TII) on biopsy predicts progression to end-stage renal disease (ESRD). However, only about half of patients with moderate-to-severe TII develop ESRD. We hypothesized that this heterogeneity in outcome reflects different underlying inflammatory states. Therefore, we interrogated renal biopsies from LN longitudinal and cross-sectional cohorts.METHODSData were acquired using conventional and highly multiplexed confocal microscopy. To accurately segment cells across whole biopsies, and to understand their spatial relationships, we developed computational pipelines by training and implementing several deep-learning models and other computer vision techniques.RESULTSHigh B cell densities were associated with protection from ESRD. In contrast, high densities of CD8+, γδ, and other CD4-CD8- T cells were associated with both acute renal failure and progression to ESRD. B cells were often organized into large periglomerular neighborhoods with Tfh cells, while CD4- T cells formed small neighborhoods in the tubulointerstitium, with frequency that predicted progression to ESRD.CONCLUSIONThese data reveal that specific in situ inflammatory states are associated with refractory and progressive renal disease.FUNDINGThis study was funded by the NIH Autoimmunity Centers of Excellence (AI082724), Department of Defense (LRI180083), Alliance for Lupus Research, and NIH awards (S10-OD025081, S10-RR021039, and P30-CA14599).


Assuntos
Falência Renal Crônica , Nefrite Lúpica , Estudos Transversais , Humanos , Inflamação/patologia , Rim/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/patologia , Estados Unidos
14.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813502

RESUMO

Although negative selection of developing B cells in the periphery is well described, yet poorly understood, evidence of naive B cell positive selection remains elusive. Using 2 humanized mouse models, we demonstrate that there was strong skewing of the expressed immunoglobulin repertoire upon transit into the peripheral naive B cell pool. This positive selection of expanded naive B cells in humanized mice resembled that observed in healthy human donors and was independent of autologous thymic tissue. In contrast, negative selection of autoreactive B cells required thymus-derived Tregs and MHC class II-restricted self-antigen presentation by B cells. Indeed, both defective MHC class II expression on B cells of patients with rare bare lymphocyte syndrome and prevention of self-antigen presentation via HLA-DM inhibition in humanized mice resulted in the production of autoreactive naive B cells. These latter observations suggest that Tregs repressed autoreactive naive B cells continuously produced by the bone marrow. Thus, a model emerged, in which both positive and negative selection shaped the human naive B cell repertoire and that each process was mediated by fundamentally different molecular and cellular mechanisms.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunodeficiência Combinada Severa/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
15.
Nat Commun ; 12(1): 4372, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272370

RESUMO

Intrarenal B cells in human renal allografts indicate transplant recipients with a poor prognosis, but how these cells contribute to rejection is unclear. Here we show using single-cell RNA sequencing that intrarenal class-switched B cells have an innate cell transcriptional state resembling mouse peritoneal B1 or B-innate (Bin) cells. Antibodies generated by Bin cells do not bind donor-specific antigens nor are they enriched for reactivity to ubiquitously expressed self-antigens. Rather, Bin cells frequently express antibodies reactive with either renal-specific or inflammation-associated antigens. Furthermore, local antigens can drive Bin cell proliferation and differentiation into plasma cells expressing self-reactive antibodies. These data show a mechanism of human inflammation in which a breach in organ-restricted tolerance by infiltrating innate-like B cells drives local tissue destruction.


Assuntos
Aloenxertos/imunologia , Linfócitos B/metabolismo , Rejeição de Enxerto/imunologia , Inflamação/metabolismo , Transplante de Rim/efeitos adversos , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Ontologia Genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunoglobulina G/imunologia , Rim/imunologia , Rim/metabolismo , Camundongos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , RNA-Seq , Análise de Célula Única , Transplante Homólogo
16.
Am J Pathol ; 191(10): 1693-1701, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129842

RESUMO

With applications in object detection, image feature extraction, image classification, and image segmentation, artificial intelligence is facilitating high-throughput analysis of image data in a variety of biomedical imaging disciplines, ranging from radiology and pathology to cancer biology and immunology. Specifically, a growth in research on deep learning has led to the widespread application of computer-visualization techniques for analyzing and mining data from biomedical images. The availability of open-source software packages and the development of novel, trainable deep neural network architectures has led to increased accuracy in cell detection and segmentation algorithms. By automating cell segmentation, it is now possible to mine quantifiable cellular and spatio-cellular features from microscopy images, providing insight into the organization of cells in various pathologies. This mini-review provides an overview of the current state of the art in deep learning- and artificial intelligence-based methods of segmentation and data mining of cells in microscopy images of tissue.


Assuntos
Inteligência Artificial , Células/citologia , Processamento de Imagem Assistida por Computador , Microscopia , Especificidade de Órgãos , Animais , Aprendizado Profundo , Humanos
17.
Front Immunol ; 12: 659151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868306

RESUMO

Protective high affinity antibody responses emerge through an orchestrated developmental process that occurs in germinal centers (GCs). While GCs have been appreciated since 1930, a wealth of recent progress provides new insights into the molecular and cellular dynamics governing humoral immunity. In this review, we highlight advances that demonstrate that fundamental GC B cell function, selection, proliferation and SHM occur within distinct cell states. The resulting new model provides new opportunities to understand the evolution of immunity in infectious, autoimmune and neoplastic diseases.


Assuntos
Centro Germinativo/citologia , Centro Germinativo/fisiologia , Animais , Formação de Anticorpos , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Humanos , Imunidade Humoral , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia
18.
J Biomed Opt ; 26(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33420765

RESUMO

SIGNIFICANCE: Lupus nephritis (LuN) is a chronic inflammatory kidney disease. The cellular mechanisms by which LuN progresses to kidney failure are poorly characterized. Automated instance segmentation of immune cells in immunofluorescence images of LuN can probe these cellular interactions. AIM: Our specific goal is to quantify how sample fixation and staining panel design impact automated instance segmentation and characterization of immune cells. APPROACH: Convolutional neural networks (CNNs) were trained to segment immune cells in fluorescence confocal images of LuN biopsies. Three datasets were used to probe the effects of fixation methods on cell features and the effects of one-marker versus two-marker per cell staining panels on CNN performance. RESULTS: Networks trained for multi-class instance segmentation on fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) samples stained with a two-marker panel had sensitivities of 0.87 and 0.91 and specificities of 0.82 and 0.88, respectively. Training on samples with a one-marker panel reduced sensitivity (0.72). Cell size and intercellular distances were significantly smaller in FFPE samples compared to fresh frozen (Kolmogorov-Smirnov, p ≪ 0.0001). CONCLUSIONS: Fixation method significantly reduces cell size and intercellular distances in LuN biopsies. The use of two markers to identify cell subsets showed improved CNN sensitivity relative to using a single marker.


Assuntos
Nefrite Lúpica , Biópsia , Humanos , Processamento de Imagem Assistida por Computador , Nefrite Lúpica/diagnóstico por imagem , Redes Neurais de Computação , Coloração e Rotulagem
19.
Curr Opin Rheumatol ; 33(2): 197-204, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394604

RESUMO

PURPOSE OF REVIEW: Lupus nephritis is a common severe manifestation of systemic lupus erythematosus. Despite recent advances in therapeutics and understanding of its pathogenesis, there are still substantial unmet needs. This review discusses recent discoveries in these areas, especially the role of tubulointerstitial inflammation (TII) in lupus nephritis. RECENT FINDINGS: Non-white ethnicity is still a major risk and poor prognostic factor in lupus nephritis. TII and fibrosis have been found to be associated with worse renal outcome but the current lupus nephritis treatment guidelines and trials are based on the degree of glomerular inflammation. In combination with mycophenolate mofetil, a B-cell-targeted therapy (belimumab) and a calcineurin inhibitor (voclosporin) have shown efficacy in recent lupus nephritis trials. However, response rates have been modest. While lupus glomerulonephritis results from immune complex deposition derived from systemic autoantibodies, TII arises from complex processes associated with in situ adaptive cell networks. These include local antibody production, and cognate or antigen-induced interactions between T follicular helper cells, and likely other T-cell populations, with antigen presenting cells including B cells, myeloid dendritic cells and plasmacytoid dendritic cells. SUMMARY: Better understanding of the pathogenesis of TII will identify novel therapeutic targets predicted to improve outcomes in our patients with lupus nephritis.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Autoanticorpos , Humanos , Inflamação , Rim , Nefrite Lúpica/etiologia , Nefrite Lúpica/terapia
20.
Front Immunol ; 11: 593177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329582

RESUMO

In human lupus nephritis, tubulointerstitial inflammation (TII) is associated with in situ expansion of B cells expressing anti-vimentin antibodies (AVAs). The mechanism by which AVAs are selected is unclear. Herein, we demonstrate that AVA somatic hypermutation (SHM) and selection increase affinity for vimentin. Indeed, germline reversion of several antibodies demonstrated that higher affinity AVAs can be selected from both low affinity B cell germline clones and even those that are strongly reactive with other autoantigens. While we demonstrated affinity maturation, enzyme-linked immunosorbent assays (ELISAs) suggested that affinity maturation might be a consequence of increasing polyreactivity or even non-specific binding. Therefore, it was unclear if there was also selection for increased specificity. Subsequent multi-color confocal microscopy studies indicated that while TII AVAs often appeared polyreactive by ELISA, they bound selectively to vimentin fibrils in whole cells or inflamed renal tissue. Using a novel machine learning pipeline (CytoSkaler) to quantify the cellular distribution of antibody staining, we demonstrated that TII AVAs were selected for both enhanced binding and specificity in situ. Furthermore, reversion of single predicted amino acids in antibody variable regions indicated that we could use CytoSkaler to capture both negative and positive selection events. More broadly, our data suggest a new approach to assess and define antibody polyreactivity based on quantifying the distribution of binding to native and contextually relevant antigens.


Assuntos
Suscetibilidade a Doenças , Imunidade Humoral , Nefrite Lúpica/etiologia , Aprendizado de Máquina , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...