Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835668

RESUMO

Microbial communities inhabiting the gut have the ability to influence physiological processes contributing to livestock production and performance. Livestock enterprises rely on animal production traits such as growth performance for profit. Previous studies have shown that gut microbiota are correlated to growth performance and could even influence it. The aim of this study was to characterise the faecal microbial profiles of Angus steers with high and low ADG at both weaning and yearling stages by profiling 16S rRNA gene sequences from rectal faecal samples. When microbial profiles were compared in terms of relative abundances, LEfSe analysis, alpha diversity metrics, and beta diversity, at the weaning stage, few significant differences were found between the high and low ADG groups. However, at yearling stage, microbial profiles significantly differed between the high and low ADG groups. The relative abundances of eight phyla and six genera significantly differed between the two groups. Alpha diversity metrics showed a significant decrease (p = 0.001) in species richness in the high ADG group. Similarly, beta diversity analysis showed that samples clustered clearly according to high and low ADG groups at yearling stage, indicating that phylogenetic similarity between the two ADG groups was significantly reduced (p = 0.005).

2.
Front Genet ; 14: 1089490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816029

RESUMO

Introduction: Phenotype predictions of beef eating quality for individual animals could be used to allocate animals to longer and more expensive feeding regimes as they enter the feedlot if they are predicted to have higher eating quality, and to sort carcasses into consumer or market value categories. Phenotype predictions can include genetic effects (breed effects, heterosis and breeding value), predicted from genetic markers, as well as fixed effects such as days aged and carcass weight, hump height, ossification, and hormone growth promotant (HGP) status. Methods: Here we assessed accuracy of phenotype predictions for five eating quality traits (tenderness, juiciness, flavour, overall liking and MQ4) in striploins from 1701 animals from a wide variety of backgrounds, including Bos indicus and Bos taurus breeds, using genotypes and simple fixed effects including days aged and carcass weight. The genetic components were predicted based on 709k single nucleotide polymorphism (SNP) using BayesR model, which assumes some markers may have a moderate to large effect. Fixed effects in the prediction included principal components of the genomic relationship matrix, to account for breed effects, heterosis, days aged and carcass weight. Results and Discussion: A model which allowed breed effects to be captured in the SNP effects (e.g., not explicitly fitting these effects) tended to have slightly higher accuracies (0.43-0.50) compared to when these effects were explicitly fitted as fixed effects (0.42-0.49), perhaps because breed effects when explicitly fitted were estimated with more error than when incorporated into the (random) SNP effects. Adding estimates of effects of days aged and carcass weight did not increase the accuracy of phenotype predictions in this particular analysis. The accuracy of phenotype prediction for beef eating quality traits was sufficiently high that such predictions could be useful in predicting eating quality from DNA samples taken from an animal/carcass as it enters the processing plant, to enable optimal supply chain value extraction by sorting product into markets with different quality. The BayesR predictions identified several novel genes potentially associated with beef eating quality.

3.
J Anim Breed Genet ; 137(3): 281-291, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31535413

RESUMO

The objectives of this study were to compare different models for analysing body weight (BW) and average daily feed intake (ADFI) data collected during a 70-day feedlot test period and to explore whether genetic parameters change over time to evaluate the implications of selection response. (Co)variance components were estimated using repeatability and random regression models in 2,071 Angus steers. Models included fixed effects of contemporary group, defined as herd-year-observation_date-age, with additive genetic and permanent environmental components as random effects. Models were assessed based on the log likelihood, Akaike's information criterion and the Bayesian information criterion. For both traits, random regression models (RRMs) presented a better fit, indicating that genetic parameters change over the test period. Using a two-trait RRM, the heritability from day 1 up to day 70 for BW increased from 0.40 to 0.50, while for ADFI, it decreased from 0.44 to 0.33. The genetic correlation increased from 0.53 at day 1 up to 0.79 at day 70. Selection based on an index assuming no change in genetic parameters would yield a 2.78%-3.13% lower selection response compared to an index using parameters estimated with RRMs and assuming these genetic parameters are correct. Results imply that it may be beneficial to implement RRMs to account for the change of parameters across the feedlot period in feed efficiency traits.


Assuntos
Ração Animal/estatística & dados numéricos , Peso Corporal/genética , Cruzamento/estatística & dados numéricos , Ingestão de Alimentos/genética , Animais , Teorema de Bayes , Bovinos , Feminino , Masculino , Modelos Genéticos
4.
BMC Genomics ; 20(1): 939, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810463

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms (SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI) and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was significantly associated this trait with special attention to those genes residing in the QTL regions. RESULTS: The heritability for RFI estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated with RFI on six QTL (on BTA1, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from 0.05 to 0.49. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six significant QTL, we found 149 genes from which OAS2, STC2, SHOX, XKR4, and SGMS1 were the closest to the most significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL, we identified 15 genes whose expression was significantly associated with RFI: BTA20) NEURL1B and CPEB4; BTA17) RITA1, CCDC42B, OAS2, RPL6, and ERP29; BTA26) A1CF, SGMS1, PAPSS2, and PTEN; BTA1) MFSD1 and RARRES1; BTA14) ATP6V1H and MRPL15. CONCLUSIONS: Our results showed six QTL regions associated with RFI in a beef Angus population where five of these QTL contained genes that have expression associated with this trait. Therefore, here we show that integrating information from gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in complex traits.


Assuntos
Ingestão de Alimentos , Perfilação da Expressão Gênica/veterinária , Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas , Animais , Bovinos , Mapeamento Cromossômico/veterinária , Feminino , Regulação da Expressão Gênica , Frequência do Gene , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA/veterinária
5.
Genet Sel Evol ; 51(1): 72, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805849

RESUMO

BACKGROUND: Whole-genome sequence (WGS) data could contain information on genetic variants at or in high linkage disequilibrium with causative mutations that underlie the genetic variation of polygenic traits. Thus far, genomic prediction accuracy has shown limited increase when using such information in dairy cattle studies, in which one or few breeds with limited diversity predominate. The objective of our study was to evaluate the accuracy of genomic prediction in a multi-breed Australian sheep population of relatively less related target individuals, when using information on imputed WGS genotypes. METHODS: Between 9626 and 26,657 animals with phenotypes were available for nine economically important sheep production traits and all had WGS imputed genotypes. About 30% of the data were used to discover predictive single nucleotide polymorphism (SNPs) based on a genome-wide association study (GWAS) and the remaining data were used for training and validation of genomic prediction. Prediction accuracy using selected variants from imputed sequence data was compared to that using a standard array of 50k SNP genotypes, thereby comparing genomic best linear prediction (GBLUP) and Bayesian methods (BayesR/BayesRC). Accuracy of genomic prediction was evaluated in two independent populations that were each lowly related to the training set, one being purebred Merino and the other crossbred Border Leicester x Merino sheep. RESULTS: A substantial improvement in prediction accuracy was observed when selected sequence variants were fitted alongside 50k genotypes as a separate variance component in GBLUP (2GBLUP) or in Bayesian analysis as a separate category of SNPs (BayesRC). From an average accuracy of 0.27 in both validation sets for the 50k array, the average absolute increase in accuracy across traits with 2GBLUP was 0.083 and 0.073 for purebred and crossbred animals, respectively, whereas with BayesRC it was 0.102 and 0.087. The average gain in accuracy was smaller when selected sequence variants were treated in the same category as 50k SNPs. Very little improvement over 50k prediction was observed when using all WGS variants. CONCLUSIONS: Accuracy of genomic prediction in diverse sheep populations increased substantially by using variants selected from whole-genome sequence data based on an independent multi-breed GWAS, when compared to genomic prediction using standard 50K genotypes.


Assuntos
Genômica/métodos , Ovinos/genética , Sequenciamento Completo do Genoma , Animais , Austrália , Teorema de Bayes , Cruzamento , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
J Anim Breed Genet ; 136(2): 91-101, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30690805

RESUMO

Benefits of genomic selection (GS) in livestock breeding operations are well known particularly where traits are sex-limited, hard to measure, have a low heritability and/or measured later in life. Sheep and beef breeders have a higher cost:benefit ratio for GS compared to dairy. Therefore, strategies for genotyping selection candidates should be explored to maximize the economic benefit of GS. The aim of the paper was to investigate, via simulation, the additional genetic gain achieved by selecting proportions of male selection candidates to be genotyped via truncation selection. A two-trait selection index was used that contained an easy and early-in-life measurement (such as post-weaning weight) as well as a hard-to-measure trait (such as intra-muscular fat). We also evaluated the optimal proportion of female selection candidates to be genotyped in breeding programmes using natural mating and/or artificial insemination (NatAI), multiple ovulation and embryo transfer (MOET) or juvenile in vitro fertilization and embryo transfer (JIVET). The final aim of the project was to investigate the total dollars spent to increase the genetic merit by one genetic standard deviation (SD) using GS and/or reproductive technologies. For NatAI and MOET breeding programmes, females were selected to have progeny by 2 years of age, while 1-month-old females were required for JIVET. Genomic testing the top 20% of male selection candidates achieved 80% of the maximum benefit from GS when selection of male candidates prior to genomic testing had an accuracy of 0.36, while 54% needed to be tested to get the same benefit when the prior selection accuracy was 0.11. To achieve 80% of the maximum benefit in female, selection required 66%, 47% and 56% of female selection candidates to be genotyped in NatAI, MOET and JIVET breeding programmes, respectively. While JIVET and MOET breeding programmes achieved the highest annual genetic gain, genotyping male selection candidates provides the most economical way to increase rates of genetic gain facilitated by genomic testing.


Assuntos
Genômica , Genótipo , Gado/genética , Seleção Genética , Animais , Bovinos , Transferência Embrionária/métodos , Genoma , Inseminação Artificial/genética , Fenótipo , Técnicas Reprodutivas , Ovinos
7.
J Anim Breed Genet ; 136(2): 79-90, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30585664

RESUMO

Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro fertilization and embryo transfer (JIVET) have been shown to accelerate genetic gain by increasing selection intensity and decreasing generation interval. Genomic selection (GS) increases the accuracy of selection of young candidates which can further accelerate genetic gain. Optimal contribution selection (OCS) is an effective method of keeping the rate of inbreeding at a sustainable level while increasing genetic merit. OCS could also be used to selectively and optimally allocate reproductive technologies in mate selection while accounting for their cost. This study uses stochastic simulation to simulate breeding programmes that use a combination of artificial insemination (AI) or natural mating (N), MOET and JIVET with GS. OCS was used to restrict inbreeding to 1.0% increase per generation and also to optimize use of reproductive technologies, considering their effect on genetic gain as well as their cost. Two Australian sheep breeding objectives were used as an example to illustrate the methodology-a terminal sire breeding objective (A) and a dual-purpose self-replacing breeding objective (B). The objective function used for optimization considered genetic merit, constrained inbreeding and cost of technologies where costs were offset by a premium paid to the seedstock breeder investing in female reproductive technologies. The premium was based on the cumulative discounted expression of genetic merit in the progeny of a commercial tier in the breeding programme multiplied by the proportion of that benefit received by the breeder. With breeding objective B, the highest premium of 64% paid to the breeder resulted in the highest allocation of reproductive technologies (4%-10% for MOET and 19%-54% for JIVET) and hence the highest annual genetic gain. Conversely, breeding objective A, which had a lower dollar value of the breeding objective and a maximum of 5% mating types for JIVET and zero for MOET were optimal, even when highest premiums were paid. This study highlights that the level of investment in breeding technologies to accelerate genetic gain depends on the investment of genetic improvement returned to the breeder per index point gain achieved. It also demonstrates that breeding programmes can be optimized including allocation of reproductive technologies at the individual animal level. Accounting for revenue to the breeder and cost of the technologies can facilitate more practical decision support for beef and sheep breeders.


Assuntos
Cruzamento , Genoma/genética , Reprodução/genética , Seleção Genética , Animais , Bovinos , Transferência Embrionária , Feminino , Endogamia , Inseminação Artificial , Técnicas Reprodutivas , Ovinos
8.
J Anim Sci ; 96(11): 4521-4531, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30124864

RESUMO

Genetic and phenotypic parameters for feed efficiency, growth, and carcass traits for Australian Angus beef cattle were estimated. Growth traits included birth weight (BWT), 200-d weight (200dWT), 400-d weight (400dWT), and 600-d weight (600dWT). Traits associated with feed efficiency were average daily weight gain (ADG), metabolic midweight, average of daily feed intake (FI), feed conversion ratio (FCR), residual feed intake (RFI), and residual gain (RG). Carcass traits involved were carcass eye muscle area (CEMA), carcass intramuscular fat (IMF), subcutaneous fat depths at the 12th/13th rib (CRIB), rump P8 fat depth (P8FAT), and carcass weight (CWT). For growth traits, heritability estimates ranged from 0.14 ± 0.03 for 200dWT to 0.48 ± 0.06 for 600dWT. For feed efficiency traits, direct heritability estimates for FI, FCR, RFI, and RG were 0.55 ± 0.08, 0.20 ± 0.06, 0.40 ± 0.07, and 0.19 ± 0.06, respectively. High heritability estimates were observed for CEMA, IMF, P8FAT, and CWT of 0.52 ± 0.09, 0.61 ± 0.09, 0.55 ± 0.09, and 0.66 ± 0.09, respectively. Strong positive genetic correlations were found for FI with 200dWT, 400dWT, and 600dWT of 0.68 ± 0.09, 0.42 ± 0.11, and 0.61 ± 0.07, respectively. Weak genetic correlations were observed between RFI and growth traits. For carcass traits, genetic correlations between RFI and CEMA, IMF, CRIB, P8FAT, CWT were -0.19 ± 0.14, 0.31 ± 0.14, 0.18 ± 0.16, 0.24 ± 0.13, and 0.40 ± 0.12, respectively. There was a tendency for low to moderate unfavorable genetic associations between feed efficiency traits, evaluated as RFI and RG, with growth and carcass traits. This implies that selection for RFI would have slight negative impacts on growth and reduce carcass quality. To avoid this, it would be necessary to build selection indices to select feed efficient animals without compromising growth and meat quality.


Assuntos
Bovinos/genética , Ingestão de Alimentos/genética , Carne Vermelha/normas , Ração Animal , Animais , Austrália , Peso ao Nascer/genética , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Masculino , Fenótipo , Aumento de Peso/genética
9.
Genet Sel Evol ; 47: 90, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26602211

RESUMO

BACKGROUND: Knowledge of the genetic structure and overall diversity of livestock species is important to maximise the potential of genome-wide association studies and genomic prediction. Commonly used measures such as linkage disequilibrium (LD), effective population size (N e ), heterozygosity, fixation index (F ST) and runs of homozygosity (ROH) are widely used and help to improve our knowledge about genetic diversity in animal populations. The development of high-density single nucleotide polymorphism (SNP) arrays and the subsequent genotyping of large numbers of animals have greatly increased the accuracy of these population-based estimates. METHODS: In this study, we used the Illumina OvineSNP50 BeadChip array to estimate and compare LD (measured by r (2) and D'), N e , heterozygosity, F ST and ROH in five Australian sheep populations: three pure breeds, i.e., Merino (MER), Border Leicester (BL), Poll Dorset (PD) and two crossbred populations i.e. F1 crosses of Merino and Border Leicester (MxB) and MxB crossed to Poll Dorset (MxBxP). RESULTS: Compared to other livestock species, the sheep populations that were analysed in this study had low levels of LD and high levels of genetic diversity. The rate of LD decay was greater in Merino than in the other pure breeds. Over short distances (<10 kb), the levels of LD were higher in BL and PD than in MER. Similarly, BL and PD had comparatively smaller N e than MER. Observed heterozygosity in the pure breeds ranged from 0.3 in BL to 0.38 in MER. Genetic distances between breeds were modest compared to other livestock species (highest F ST = 0.063) but the genetic diversity within breeds was high. Based on ROH, two chromosomal regions showed evidence of strong recent selection. CONCLUSIONS: This study shows that there is a large range of genome diversity in Australian sheep breeds, especially in Merino sheep. The observed range of diversity will influence the design of genome-wide association studies and the results that can be obtained from them. This knowledge will also be useful to design reference populations for genomic prediction of breeding values in sheep.


Assuntos
Variação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Carneiro Doméstico/genética , Animais , Austrália , Cruzamento , Genoma , Genômica/métodos , Genótipo , Haplótipos , Endogamia , Modelos Genéticos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Ovinos
10.
Genet Sel Evol ; 47: 70, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26370143

RESUMO

BACKGROUND: Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs. METHODS: Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection. RESULTS: All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively. CONCLUSIONS: Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space.


Assuntos
Locos de Características Quantitativas , Técnicas de Reprodução Assistida/veterinária , Seleção Artificial , Animais , Bovinos , Indústria de Laticínios , Feminino , Masculino , Modelos Teóricos , Seleção Genética , Fatores Sexuais , Ovinos
11.
Genet Sel Evol ; 47: 66, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26272623

RESUMO

BACKGROUND: Body weight (BW) is an important trait for meat production in sheep. Although over the past few years, numerous quantitative trait loci (QTL) have been detected for production traits in cattle, few QTL studies have been reported for sheep, with even fewer on meat production traits. Our objective was to perform a genome-wide association study (GWAS) with the medium-density Illumina Ovine SNP50 BeadChip to identify genomic regions and corresponding haplotypes associated with BW in Australian Merino sheep. METHODS: A total of 1781 Australian Merino sheep were genotyped using the medium-density Illumina Ovine SNP50 BeadChip. Among the 53 862 single nucleotide polymorphisms (SNPs) on this array, 48 640 were used to perform a GWAS using a linear mixed model approach. Genotypes were phased with hsphase; to estimate SNP haplotype effects, linkage disequilibrium blocks were identified in the detected QTL region. RESULTS: Thirty-nine SNPs were associated with BW at a Bonferroni-corrected genome-wide significance threshold of 1 %. One region on sheep (Ovis aries) chromosome 6 (OAR6) between 36.15 and 38.56 Mb, included 13 significant SNPs that were associated with BW; the most significant SNP was OAR6_41936490.1 (P = 2.37 × 10(-16)) at 37.69 Mb with an allele substitution effect of 2.12 kg, which corresponds to 0.248 phenotypic standard deviations for BW. The region that surrounds this association signal on OAR6 contains three genes: leucine aminopeptidase 3 (LAP3), which is involved in the processing of the oxytocin precursor; NCAPG non-SMC condensin I complex, subunit G (NCAPG), which is associated with foetal growth and carcass size in cattle; and ligand dependent nuclear receptor corepressor-like (LCORL), which is associated with height in humans and cattle. CONCLUSIONS: The GWAS analysis detected 39 SNPs associated with BW in sheep and a major QTL region was identified on OAR6. In several other mammalian species, regions that are syntenic with this region have been found to be associated with body size traits, which may reflect that the underlying biological mechanisms share a common ancestry. These findings should facilitate the discovery of causative variants for BW and contribute to marker-assisted selection.


Assuntos
Peso Corporal/genética , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Ovinos/anatomia & histologia , Animais , Sequência de Bases , Biometria , Bovinos/anatomia & histologia , Sequência Conservada , Haplótipos , Humanos , Modelos Lineares , Locos de Características Quantitativas , Ovinos/genética
12.
Genet Sel Evol ; 45: 44, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24171942

RESUMO

BACKGROUND: Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity. METHODS: The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences. RESULTS: Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data. CONCLUSIONS: The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.


Assuntos
Cruzamento , Bovinos/genética , Genoma , Gado/genética , Animais , Simulação por Computador , Feminino , Genótipo , Endogamia , Masculino , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética
13.
Methods Mol Biol ; 1019: 321-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23756897

RESUMO

Genomic best linear unbiased prediction (gBLUP) is a method that utilizes genomic relationships to estimate the genetic merit of an individual. For this purpose, a genomic relationship matrix is used, estimated from DNA marker information. The matrix defines the covariance between individuals based on observed similarity at the genomic level, rather than on expected similarity based on pedigree, so that more accurate predictions of merit can be made. gBLUP has been used for the prediction of merit in livestock breeding, may also have some applications to the prediction of disease risk, and is also useful in the estimation of variance components and genomic heritabilities.


Assuntos
Algoritmos , Cruzamento , Genoma , Plantas/genética , Animais , Teorema de Bayes , Estudo de Associação Genômica Ampla , Modelos Lineares , Modelos Genéticos , Linhagem , Característica Quantitativa Herdável
14.
Genet Sel Evol ; 44: 4, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22321529

RESUMO

BACKGROUND: The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. METHODS: Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. RESULTS: The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. CONCLUSIONS: An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.


Assuntos
Cruzamento , Gado/genética , Modelos Genéticos , Animais , Simulação por Computador , Feminino , Genômica/métodos , Masculino , Linhagem , Reprodutibilidade dos Testes , Ovinos/genética
15.
Genet Sel Evol ; 43: 18, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21575265

RESUMO

BACKGROUND: The theory of genomic selection is based on the prediction of the effects of quantitative trait loci (QTL) in linkage disequilibrium (LD) with markers. However, there is increasing evidence that genomic selection also relies on "relationships" between individuals to accurately predict genetic values. Therefore, a better understanding of what genomic selection actually predicts is relevant so that appropriate methods of analysis are used in genomic evaluations. METHODS: Simulation was used to compare the performance of estimates of breeding values based on pedigree relationships (Best Linear Unbiased Prediction, BLUP), genomic relationships (gBLUP), and based on a Bayesian variable selection model (Bayes B) to estimate breeding values under a range of different underlying models of genetic variation. The effects of different marker densities and varying animal relationships were also examined. RESULTS: This study shows that genomic selection methods can predict a proportion of the additive genetic value when genetic variation is controlled by common quantitative trait loci (QTL model), rare loci (rare variant model), all loci (infinitesimal model) and a random association (a polygenic model). The Bayes B method was able to estimate breeding values more accurately than gBLUP under the QTL and rare variant models, for the alternative marker densities and reference populations. The Bayes B and gBLUP methods had similar accuracies under the infinitesimal model. CONCLUSIONS: Our results suggest that Bayes B is superior to gBLUP to estimate breeding values from genomic data. The underlying model of genetic variation greatly affects the predictive ability of genomic selection methods, and the superiority of Bayes B over gBLUP is highly dependent on the presence of large QTL effects. The use of SNP sequence data will outperform the less dense marker panels. However, the size and distribution of QTL effects and the size of reference populations still greatly influence the effectiveness of using sequence data for genomic prediction.


Assuntos
Cruzamento/estatística & dados numéricos , Variação Genética , Locos de Características Quantitativas/genética , Animais , Teorema de Bayes , Genoma , Desequilíbrio de Ligação , Modelos Genéticos , Linhagem , Polimorfismo de Nucleotídeo Único , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...