Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 372: 91-105, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18314720

RESUMO

The fission yeast Schizosaccharomyces pombe, widely used for studies of cell cycle control and differentiation, provides an alternative and complementary model to the budding yeast Saccharomyces cerevisiae for studies of nucleo-mitochondrial interactions. There are striking similarities between S. pombe and mammalian cells, in both their respiratory physiology and their mitochondrial genome structure. This technical review briefly lists the general and specific properties that are helpful to know when starting to use fission yeast as a model system for mitochondrial studies. In addition, advice is given for cell growth and genetic techniques, tips for disruption of genes involved in respiration are presented. and a basic differential centrifugation protocol is provided for the isolation of purified mitochondria that are suitable for diverse applications such as subfractionation and in vitro import.


Assuntos
Fracionamento Celular/métodos , Mitocôndrias/metabolismo , Modelos Biológicos , Schizosaccharomyces/metabolismo , Citocromos/metabolismo , Genes Fúngicos , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento
2.
EMBO J ; 24(23): 4029-40, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16270030

RESUMO

Survival of bloodstream form Trypanosoma brucei, the agent of African sleeping sickness, normally requires mitochondrial gene expression, despite the absence of oxidative phosphorylation in this stage of the parasite's life cycle. Here we report that silencing expression of the alpha subunit of the mitochondrial F(1)-ATP synthase complex is lethal for bloodstream stage T. brucei as well as for T. evansi, a closely related species that lacks mitochondrial protein coding genes (i.e. is dyskinetoplastic). Our results suggest that the lethal effect is due to collapse of the mitochondrial membrane potential, which is required for mitochondrial function and biogenesis. We also identified a mutation in the gamma subunit of F(1) that is likely to be involved in circumventing the requirement for mitochondrial gene expression in another dyskinetoplastic form. Our data reveal that the mitochondrial ATP synthase complex functions in the bloodstream stage opposite to that in the insect stage and in most other eukaryotes, namely using ATP hydrolysis to generate the mitochondrial membrane potential.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/fisiologia , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Animais , Potenciais da Membrana/fisiologia , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/sangue , Fósforo-Oxigênio Liases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Edição de RNA/fisiologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
3.
Curr Genet ; 44(4): 202-10, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12923659

RESUMO

TIM9 has been identified as an additional novel gene required for the petite-positive phenotype in Saccharomyces cerevisiae. tim9-1 was obtained through a screen for respiratory-deficient strains that are unable to survive in the absence of mitochondrial DNA. A point mutation found in the tim9-1 coding region converts codon 71 from Gly to Arg. Examination of genes encoding other Tim components indicated that the temperature-conditional alleles of essential genes for the viability of S. cerevisiae, TIM9, TIM10 and TIM12, are required for petite survival, while deletion of TIM8 and TIM13 has no notable effect on petite cell viability. Northern hybridization results suggested that the Spt7 transcription factor is strictly involved in transcription of TIM9 and that the synergistic lethality of tim9-1/spt7Delta dual mutations is due to the deficiency of TIM9 transcription together with defective function of the tim9-1 protein.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas Mitocondriais/genética , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Alelos , Sequência de Aminoácidos , Northern Blotting , Análise Mutacional de DNA , Primers do DNA , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Mutação Puntual/genética , Saccharomyces cerevisiae/citologia , Análise de Sequência de DNA , Temperatura , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia
4.
Nucleic Acids Res ; 31(10): 2524-33, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12736301

RESUMO

A strain of Saccharomyces cerevisiae, defective in small subunit ribosomal RNA processing, has a mutation in YOR145c ORF that converts Gly235 to Asp. Yor145c is a nucleolar protein required for cell viability and has been reported recently to be present in 90S pre-ribosomal particles. The Gly235Asp mutation in YOR145c is found in a KH-type RNA-binding domain and causes a marked deficiency in 18S rRNA production. Detailed studies by northern blotting and primer extension analyses show that the mutant strain impairs the early pre-rRNA processing cleavage essentially at sites A1 and A2, leading to accumulation of a 22S dead-end processing product that is found in only a few rRNA processing mutants. Furthermore, U3, U14, snR10 and snR30 snoRNAs, involved in early pre-rRNA cleavages, are not destabilized by the YOR145c mutation. As the protein encoded by YOR145c is found in pre-ribosomal particles and the mutant strain is defective in ribosomal RNA processing, we have renamed it as RRP20.


Assuntos
Proteínas Nucleares/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Sequência Conservada/genética , DNA Fúngico/química , DNA Fúngico/genética , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
5.
Mitochondrion ; 2(4): 257-65, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16120326

RESUMO

A mechanism for hypoxia survival by eukaryotic cells is suggested from studies on the petite mutation of yeasts. Previous work has shown that mutations in the alpha, beta and gamma subunit genes of F1-ATPase can suppress lethality due to loss of the mitochondrial genome from the petite-negative yeast Kluyveromyceslactis. Here it is reported that suppressor mutations appear to increase the affinity of F1-ATPase for ATP. Extension of this study to other yeasts shows that petite-positive species have a higher affinity for ATP in the hydrolysis reaction than petite-negative species. Possession of a F1-ATPase with a low K(m) for ATP is considered to be an adaptation for hypoxic growth, enabling maintenance of the mitochondrial inner membrane potential, deltapsi, by enhanced export of protons through F1F0-ATP synthase connected to increased ATP hydrolysis at low substrate concentration.

6.
Mitochondrion ; 2(4): 267-75, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16120327

RESUMO

nad genes encoding subunits of the NADH dehydrogenase complex 1 have been revealed in the yeast Debaryomyces (Schwanniomyces) occidentalis. nad1, nad3, nad5, nad6 and most large mitochondrial genes have been located on a circular 41-kb map of mitochondrial DNA from this petite negative species. The genes nad1-nad6 are co-transcribed and the transcription is not inhibited by glucose. Sequences of nad6 and 5'-nad1 compared to homologs in other yeasts indicate better amino acids conservation for nad1 product than for nad6. A cytochrome b deficient mutant dependent on alternative oxidase and functional complex 1 for growth on respirable substrates also exhibits co-transcription of nad1-nad6.

7.
Curr Genet ; 42(2): 94-102, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12478388

RESUMO

The nature of mutations affecting several cytochrome-deficient mutants of Debaryomyces (Schwanniomyces) occidentalis has been characterized. The DR12 mutant, which is deficient in cytochrome b, and the B10Mn mutant, which is deficient in cytochromes b and a, a3, are deleted in the mitochondrial CYB and COX1 genes respectively. The B10 strain, which is partially deficient in cytochrome b, has no detectable change in its mitochondrial DNA and possibly carries nuclear lesion(s). These three mutants, unlike the rho(-) and rho degrees "petite" mutants of Saccharomyces cerevisiae, can still grow on non-fermentable substrates, due to the development of a salicylhydroxamic acid (SHAM)-sensitive alternative pathway linked to phosphorylation at site 1. A gly(-) mutant lacking mtDNA and respiratory capacity has been isolated. For the first time, it is demonstrated that mtDNA can be altered or even lost without lethal consequence in D. occidentalis, although this yeast was classified as a petite-negative species.


Assuntos
Mitocôndrias/genética , Saccharomycetales/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Respiração Celular/genética , Cloranfenicol/farmacologia , Ciclo-Oxigenase 1 , Grupo dos Citocromos b/deficiência , Grupo dos Citocromos b/genética , Citocromos/efeitos dos fármacos , Citocromos/metabolismo , DNA Mitocondrial/genética , Eritromicina/farmacologia , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Isoenzimas/genética , Mitocôndrias/metabolismo , Mutação , Prostaglandina-Endoperóxido Sintases/genética , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/metabolismo , Deleção de Sequência , Análise Espectral
8.
Genetics ; 160(4): 1389-400, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11973295

RESUMO

The Saccharomyces cerevisiae MGM101 gene encodes a DNA-binding protein targeted to mitochondrial nucleoids. MGM101 is essential for maintenance of a functional rho(+) genome because meiotic segregants, with a disrupted mgm101 allele, cannot undergo more than 10 divisions on glycerol medium. Quantitative analysis of mtDNA copy number in a rho(+) strain carrying a temperature-sensitive allele, mgm101-1, revealed that the amount of mtDNA is halved each cell division upon a shift to the restrictive temperature. These data suggest that mtDNA replication is rapidly blocked in cells lacking MGM101. However, a small proportion of meiotic segregants, disrupted in MGM101, have rho(-) genomes that are stably maintained. Interestingly, all surviving rho(-) mtDNAs contain an ori/rep sequence. Disruption of MGM101 in hypersuppressive (HS) strains does not have a significant effect on the propagation of HS rho(-) mtDNA. However, in petites lacking an ori/rep, disruption of MGM101 leads to either a complete loss or a dramatically decreased stability of mtDNA. This discriminatory effect of MGM101 suggests that replication of rho(+) and ori/rep-devoid rho(-) mtDNAs is carried out by the same process. By contrast, the persistence of ori/rep-containing mtDNA in HS petites lacking MGM101 identifies a distinct replication pathway. The alternative mtDNA replication mechanism provided by ori/rep is independent of mitochondrial RNA polymerase encoded by RPO41 as a HS rho(-) genome is stably maintained in a mgm101, rpo41 double mutant.


Assuntos
Replicação do DNA , DNA Mitocondrial/biossíntese , Proteínas Fúngicas/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA , Temperatura Alta , Mitocôndrias/genética , Proteínas Mitocondriais , Mutação , Origem de Replicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...