Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37507930

RESUMO

Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.

2.
Antioxidants (Basel) ; 11(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36552517

RESUMO

Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments that can slow or stop disease progression. Primary CoQ10 deficiency can arise from mutations in any of the COQ genes responsible for CoQ biosynthesis. While many mutations in these genes have been identified, the clinical significance of most of them remains unclear. Here we analyzed the structural and functional impact of 429 human missense single nucleotide variants (SNVs) that give rise to amino acid substitutions in the conserved and functional regions of human genes encoding a high molecular weight complex known as the CoQ synthome (or Complex Q), consisting of the COQ3-COQ7 and COQ9 gene products. Using structures of COQ polypeptides, close homologs, and AlphaFold models, we identified 115 SNVs that are potentially pathogenic. Further biochemical characterizations in model organisms such as Saccharomyces cerevisiae are required to validate the pathogenicity of the identified SNVs. Collectively, our results will provide a resource for clinicians during patient diagnosis and guide therapeutic efforts toward combating primary CoQ10 deficiency.

3.
Diabetes ; 71(9): 1979-1993, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35730902

RESUMO

Inflammation and oxidative stress in pancreatic islets amplify the appearance of various posttranslational modifications to self-proteins. In this study, we identified a select group of carbonylated islet proteins arising before the onset of hyperglycemia in NOD mice. Of interest, we identified carbonyl modification of the prolyl-4-hydroxylase ß subunit (P4Hb) that is responsible for proinsulin folding and trafficking as an autoantigen in both human and murine type 1 diabetes. We found that carbonylated P4Hb is amplified in stressed islets coincident with decreased glucose-stimulated insulin secretion and altered proinsulin-to-insulin ratios. Autoantibodies against P4Hb were detected in prediabetic NOD mice and in early human type 1 diabetes prior to the onset of anti-insulin autoimmunity. Moreover, we identify autoreactive CD4+ T-cell responses toward carbonyl-P4Hb epitopes in the circulation of patients with type 1 diabetes. Our studies provide mechanistic insight into the pathways of proinsulin metabolism and in creating autoantigenic forms of insulin in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Autoantígenos , Autoimunidade , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Proinsulina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
4.
J Biol Chem ; 297(5): 101283, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626646

RESUMO

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mitocôndrias , Oxigenases de Função Mista , Filogenia , Ubiquinona , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
5.
Redox Biol ; 46: 102127, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34521065

RESUMO

Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases.


Assuntos
Doenças Mitocondriais , Ubiquinona , Animais , Testes Genéticos , Camundongos , Doenças Mitocondriais/genética , Oxirredução , Fosfatidiletanolamina N-Metiltransferase , Fosfolipídeos , Ubiquinona/metabolismo
6.
Metabolites ; 11(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198496

RESUMO

Coenzyme Q (ubiquinone or CoQ) is a conserved polyprenylated lipid essential for mitochondrial respiration. CoQ is composed of a redox-active benzoquinone ring and a long polyisoprenyl tail that serves as a membrane anchor. A classic pathway leading to CoQ biosynthesis employs 4-hydroxybenzoic acid (4HB). Recent studies with stable isotopes in E. coli, yeast, and plant and animal cells have identified CoQ intermediates and new metabolic pathways that produce 4HB. Stable isotope labeling has identified para-aminobenzoic acid as an alternate ring precursor of yeast CoQ biosynthesis, as well as other natural products, such as kaempferol, that provide ring precursors for CoQ biosynthesis in plants and mammals. In this review, we highlight how stable isotopes can be used to delineate the biosynthetic pathways leading to CoQ.

7.
Redox Biol ; 46: 102061, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246922

RESUMO

Dietary fats are important for human health, yet it is not fully understood how different fats affect various health problems. Although polyunsaturated fatty acids (PUFAs) are generally considered as highly oxidizable, those of the n-3 series can ameliorate the risk of many age-related disorders. Coenzyme Q (CoQ) is both an essential component of the mitochondrial electron transport chain and the only lipid-soluble antioxidant that animal cells can synthesize. Previous work has documented the protective antioxidant properties of CoQ against the autoxidation products of PUFAs. Here, we have explored in vitro and in vivo models to better understand the regulation of CoQ biosynthesis by dietary fats. In mouse liver, PUFAs increased CoQ content, and PUFAs of the n-3 series increased preferentially CoQ10. This response was recapitulated in hepatic cells cultured in the presence of lipid emulsions, where we additionally demonstrated a role for n-3 PUFAs as regulators of CoQ biosynthesis via the upregulation of several COQ proteins and farnesyl pyrophosphate levels. In both models, n-3 PUFAs altered the mitochondrial network without changing the overall mitochondrial mass. Furthermore, in cellular systems, n-3 PUFAs favored the synthesis of CoQ10 over CoQ9, thus altering the ratio between CoQ isoforms through a mechanism that involved downregulation of farnesyl diphosphate synthase activity. This effect was recapitulated by both siRNA silencing and by pharmacological inhibition of farnesyl diphosphate synthase with zoledronic acid. We highlight here the ability of n-3 PUFAs to regulate CoQ biosynthesis, CoQ content, and the ratio between its isoforms, which might be relevant to better understand the health benefits associated with this type of fat. Additionally, we identify for the first time zoledronic acid as a drug that inhibits CoQ biosynthesis, which must be also considered with respect to its biological effects on patients.


Assuntos
Ácidos Graxos Ômega-3 , Fígado/enzimologia , Mitocôndrias , Ubiquinona , Animais , Antioxidantes , Dieta , Camundongos
8.
Cell Rep ; 34(11): 108869, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730581

RESUMO

Mitochondrial carriers (MCs) mediate the passage of small molecules across the inner mitochondrial membrane (IMM), enabling regulated crosstalk between compartmentalized reactions. Despite MCs representing the largest family of solute carriers in mammals, most have not been subjected to a comprehensive investigation, limiting our understanding of their metabolic contributions. Here, we functionally characterize SFXN1, a member of the non-canonical, sideroflexin family. We find that SFXN1, an integral IMM protein with an uneven number of transmembrane domains, is a TIM22 complex substrate. SFXN1 deficiency leads to mitochondrial respiratory chain impairments, most detrimental to complex III (CIII) biogenesis, activity, and assembly, compromising coenzyme Q levels. The CIII dysfunction is independent of one-carbon metabolism, the known primary role for SFXN1 as a mitochondrial serine transporter. Instead, SFXN1 supports CIII function by participating in heme and α-ketoglutarate metabolism. Our findings highlight the multiple ways that SFXN1-based amino acid transport impacts mitochondrial and cellular metabolic efficiency.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Formiatos/farmacologia , Deleção de Genes , Células HEK293 , Células HeLa , Heme/biossíntese , Hemina/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Ferro/metabolismo , Ácidos Cetoglutáricos/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Especificidade por Substrato/efeitos dos fármacos
9.
Molecules ; 25(13)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605010

RESUMO

Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain and an important antioxidant present in all cellular membranes. CoQ deficiencies are frequent in aging and in age-related diseases, and current treatments are limited to CoQ supplementation. Strategies that rely on CoQ supplementation suffer from poor uptake and trafficking of this very hydrophobic molecule. In a previous study, the dietary flavonol kaempferol was reported to serve as a CoQ ring precursor and to increase the CoQ content in kidney cells, but neither the part of the molecule entering CoQ biosynthesis nor the mechanism were described. In this study, kaempferol labeled specifically in the B-ring was isolated from Arabidopsis plants. Kidney cells treated with this compound incorporated the B-ring of kaempferol into newly synthesized CoQ, suggesting that the B-ring is metabolized via a mechanism described in plant cells. Kaempferol is a natural flavonoid present in fruits and vegetables and possesses antioxidant, anticancer, and anti-inflammatory therapeutic properties. A better understanding of the role of kaempferol as a CoQ ring precursor makes this bioactive compound a potential candidate for the design of interventions aiming to increase endogenous CoQ biosynthesis and may improve CoQ deficient phenotypes in aging and disease.


Assuntos
Antioxidantes/metabolismo , Ataxia/genética , Quempferóis/metabolismo , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Animais , Ataxia/metabolismo , Ataxia/patologia , Células Epiteliais/metabolismo , Flavonóis/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Membranas Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Mutação/genética , Ubiquinona/genética , Ubiquinona/metabolismo
10.
PLoS One ; 15(6): e0234192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479562

RESUMO

Saccharomyces cerevisiae Coq8 is a member of the ancient UbiB atypical protein kinase family. Coq8, and its orthologs UbiB, ABC1, ADCK3, and ADCK4, are required for the biosynthesis of coenzyme Q in yeast, E. coli, A. thaliana, and humans. Each Coq8 ortholog retains nine highly conserved protein kinase-like motifs, yet its functional role in coenzyme Q biosynthesis remains mysterious. Coq8 may function as an ATPase whose activity is stimulated by coenzyme Q intermediates and phospholipids. A key yeast point mutant expressing Coq8-A197V was previously shown to result in a coenzyme Q-less, respiratory deficient phenotype. The A197V substitution occurs in the crucial Ala-rich protein kinase-like motif I of yeast Coq8. Here we show that long-term cultures of mutants expressing Coq8-A197V produce spontaneous revertants with the ability to grow on medium containing a non-fermentable carbon source. Each revertant is shown to harbor a secondary intragenic suppressor mutation within the COQ8 gene. The intragenic suppressors restore the synthesis of coenzyme Q. One class of the suppressors fully restores the levels of coenzyme Q and key Coq polypeptides necessary for the maintenance and integrity of the high-molecular mass CoQ synthome (also termed complex Q), while the other class provides only a partial rescue. Mutants harboring the first class of suppressors grow robustly under respiratory conditions, while mutants containing the second class grow more slowly under these conditions. Our work provides insight into the function of this important yet still enigmatic Coq8 family.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Ubiquinona/biossíntese , Substituição de Aminoácidos , Asparagina , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética
11.
Free Radic Biol Med ; 154: 105-118, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387128

RESUMO

Coenzyme Q (CoQ) is an essential player in the respiratory electron transport chain and is the only lipid-soluble antioxidant synthesized endogenously in mammalian and yeast cells. In humans, genetic mutations, pathologies, certain medical treatments, and aging, result in CoQ deficiencies, which are linked to mitochondrial, cardiovascular, and neurodegenerative diseases. The only strategy available for these patients is CoQ supplementation. CoQ supplements benefit a small subset of patients, but the poor solubility of CoQ greatly limits treatment efficacy. Consequently, the efficient delivery of CoQ to the mitochondria and restoration of respiratory function remains a major challenge. A better understanding of CoQ uptake and mitochondrial delivery is crucial to make this molecule a more efficient and effective therapeutic tool. In this study, we investigated the mechanism of CoQ uptake and distribution using the yeast Saccharomyces cerevisiae as a model organism. The addition of exogenous CoQ was tested for the ability to restore growth on non-fermentable medium in several strains that lack CoQ synthesis (coq mutants). Surprisingly, we discovered that the presence of CoQ biosynthetic intermediates impairs assimilation of CoQ into a functional respiratory chain in yeast cells. Moreover, a screen of 40 gene deletions considered to be candidates to prevent exogenous CoQ from rescuing growth of the CoQ-less coq2Δ mutant, identified six novel genes (CDC10, RTS1, RVS161, RVS167, VPS1, and NAT3) as necessary for efficient trafficking of CoQ to mitochondria. The proteins encoded by these genes represent essential steps in the pathways responsible for transport of exogenously supplied CoQ to its functional sites in the cell, and definitively associate CoQ distribution with endocytosis and intracellular vesicular trafficking pathways conserved from yeast to human cells.


Assuntos
Doenças Mitocondriais , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Ligação ao GTP , Humanos , Lipídeos , Proteínas dos Microfilamentos , Acetiltransferase N-Terminal B , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/metabolismo , Proteínas de Transporte Vesicular
12.
J Am Soc Nephrol ; 31(6): 1191-1211, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32381600

RESUMO

BACKGROUND: Mutations in ADCK4 (aarF domain containing kinase 4) generally manifest as steroid-resistant nephrotic syndrome and induce coenzyme Q10 (CoQ10) deficiency. However, the molecular mechanisms underlying steroid-resistant nephrotic syndrome resulting from ADCK4 mutations are not well understood, largely because the function of ADCK4 remains unknown. METHODS: To elucidate the ADCK4's function in podocytes, we generated a podocyte-specific, Adck4-knockout mouse model and a human podocyte cell line featuring knockout of ADCK4. These knockout mice and podocytes were then treated with 2,4-dihydroxybenzoic acid (2,4-diHB), a CoQ10 precursor analogue, or with a vehicle only. We also performed proteomic mass spectrometry analysis to further elucidate ADCK4's function. RESULTS: Absence of Adck4 in mouse podocytes caused FSGS and albuminuria, recapitulating features of nephrotic syndrome caused by ADCK4 mutations. In vitro studies revealed that ADCK4-knockout podocytes had significantly reduced CoQ10 concentration, respiratory chain activity, and mitochondrial potential, and subsequently displayed an increase in the number of dysmorphic mitochondria. However, treatment of 3-month-old knockout mice or ADCK4-knockout cells with 2,4-diHB prevented the development of renal dysfunction and reversed mitochondrial dysfunction in podocytes. Moreover, ADCK4 interacted with mitochondrial proteins such as COQ5, as well as cytoplasmic proteins such as myosin and heat shock proteins. Thus, ADCK4 knockout decreased the COQ complex level, but overexpression of ADCK4 in ADCK4-knockout podocytes transfected with wild-type ADCK4 rescued the COQ5 level. CONCLUSIONS: Our study shows that ADCK4 is required for CoQ10 biosynthesis and mitochondrial function in podocytes, and suggests that ADCK4 in podocytes stabilizes proteins in complex Q in podocytes. Our study also suggests a potential treatment strategy for nephrotic syndrome resulting from ADCK4 mutations.


Assuntos
Hidroxibenzoatos/farmacologia , Proteínas Quinases/fisiologia , Ubiquinona/análogos & derivados , Animais , Estabilidade Enzimática , Glomerulosclerose Segmentar e Focal/etiologia , Células HEK293 , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Podócitos/enzimologia , Ubiquinona/metabolismo
13.
J Biol Chem ; 295(18): 6023-6042, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205446

RESUMO

Coenzyme Q (Q n ) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1-coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6 The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because "fused" proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.


Assuntos
Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ubiquinona/análogos & derivados , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mitocôndrias/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Ubiquinona/biossíntese , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismo
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1226-1234, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31121262

RESUMO

Terpenoid quinones are liposoluble redox-active compounds that serve as essential electron carriers and antioxidants. One such quinone, rhodoquinone (RQ), couples the respiratory electron transfer chain to the reduction of fumarate to facilitate anaerobic respiration. This mechanism allows RQ-synthesizing organisms to operate their respiratory chain using fumarate as a final electron acceptor. RQ biosynthesis is restricted to a handful of prokaryotic and eukaryotic organisms, and details of this biosynthetic pathway remain enigmatic. One gene, rquA, was discovered to be required for RQ biosynthesis in Rhodospirillum rubrum. However, the function of the gene product, RquA, has remained unclear. Here, using reverse genetics approaches, we demonstrate that RquA converts ubiquinone to RQ directly. We also demonstrate the first in vivo synthetic production of RQ in Escherichia coli and Saccharomyces cerevisiae, two organisms that do not natively produce RQ. These findings help clarify the complete RQ biosynthetic pathway in species which contain RquA homologs.


Assuntos
Proteínas de Bactérias/metabolismo , Rhodospirillum rubrum/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vias Biossintéticas , Escherichia coli/metabolismo , Oxirredução , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
15.
J Lipid Res ; 60(7): 1293-1310, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048406

RESUMO

Coenzyme Q (CoQ or ubiquinone) serves as an essential redox-active lipid in respiratory electron and proton transport during cellular energy metabolism. CoQ also functions as a membrane-localized antioxidant protecting cells against lipid peroxidation. CoQ deficiency is associated with multiple human diseases; CoQ10 supplementation in particular has noted cardioprotective benefits. In Saccharomyces cerevisiae, Coq10, a putative START domain protein, is believed to chaperone CoQ to sites where it functions. Yeast coq10 deletion mutants (coq10Δ) synthesize CoQ inefficiently during log phase growth and are respiratory defective and sensitive to oxidative stress. Humans have two orthologs of yeast COQ10, COQ10A and COQ10B Here, we tested the human co-orthologs for their ability to rescue the yeast mutant. We showed that expression of either human ortholog, COQ10A or COQ10B, rescues yeast coq10Δ mutant phenotypes, restoring the function of respiratory-dependent growth on a nonfermentable carbon source and sensitivity to oxidative stress induced by treatment with PUFAs. These effects indicate a strong functional conservation of Coq10 across different organisms. However, neither COQ10A nor COQ10B restored CoQ biosynthesis when expressed in the yeast coq10Δ mutant. The involvement of yeast Coq10 in CoQ biosynthesis may rely on its interactions with another protein, possibly Coq11, which is not found in humans. Coexpression analyses of yeast COQ10 and human COQ10A and COQ10B provide additional insights to functions of these START domain proteins and their potential roles in other biologic pathways.


Assuntos
Ataxia/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Antioxidantes/metabolismo , Ataxia/genética , Humanos , Peroxidação de Lipídeos/fisiologia , Espectrometria de Massas , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
16.
Contact (Thousand Oaks) ; 2: 2515256418825409, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30937424

RESUMO

Loss of the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) complex that resides in contact sites between the yeast ER and mitochondria leads to impaired respiration; however, the reason for that is not clear. We find that in ERMES null mutants, there is an increase in the level of mRNAs encoding for biosynthetic enzymes of coenzyme Q6 (CoQ6), an essential electron carrier of the mitochondrial respiratory chain. We show that the mega complexes involved in CoQ6 biosynthesis (CoQ synthomes) are destabilized in ERMES mutants. This, in turn, affects the level and distribution of CoQ6 within the cell, resulting in reduced mitochondrial CoQ6. We suggest that these outcomes contribute to the reduced respiration observed in ERMES mutants. Fluorescence microscopy experiments demonstrate close proximity between the CoQ synthome and ERMES, suggesting a spatial coordination. The involvement of the ER-mitochondria contact site in regulation of CoQ6 biogenesis highlights an additional level of communication between these two organelles.

17.
Cell Chem Biol ; 26(4): 465-467, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002800

RESUMO

Ubiquinone (UQ) is a conserved polyprenylated lipid essential to cellular respiration. Two papers, one in this issue of Cell Chemical Biology (Hajj Chehade et al., 2019) and another in Molecular Cell (Lohman et al., 2019), identify lipid-binding proteins that play crucial roles in chaperoning UQ-intermediates.


Assuntos
Eucariotos , Ubiquinona , Butadienos , Proteínas de Transporte , Hemiterpenos , Lipídeos
18.
J Am Soc Nephrol ; 30(3): 393-405, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30737270

RESUMO

BACKGROUND: Although studies have identified >55 genes as causing steroid-resistant nephrotic syndrome (SRNS) and localized its pathogenesis to glomerular podocytes, the disease mechanisms of SRNS remain largely enigmatic. We recently reported that individuals with mutations in COQ6, a coenzyme Q (also called CoQ10, CoQ, or ubiquinone) biosynthesis pathway enzyme, develop SRNS with sensorineural deafness, and demonstrated the beneficial effect of CoQ for maintenace of kidney function. METHODS: To study COQ6 function in podocytes, we generated a podocyte-specific Coq6 knockout mouse (Coq6podKO ) model and a transient siRNA-based COQ6 knockdown in a human podocyte cell line. Mice were monitored for development of proteinuria and assessed for development of glomerular sclerosis. Using a podocyte migration assay, we compared motility in COQ6 knockdown podocytes and control podocytes. We also randomly assigned 5-month-old Coq6podKO mice and controls to receive no treatment or 2,4-dihydroxybenzoic acid (2,4-diHB), an analog of a CoQ precursor molecule that is classified as a food additive by health authorities in Europe and the United States. RESULTS: Abrogation of Coq6 in mouse podocytes caused FSGS and proteinuria (>46-fold increases in albuminuria). In vitro studies revealed an impaired podocyte migration rate in COQ6 knockdown human podocytes. Treating Coq6podKO mice or cells with 2,4-diHB prevented renal dysfunction and reversed podocyte migration rate impairment. Survival of Coq6podKO mice given 2,4diHB was comparable to that of control mice and significantly higher than that of untreated Coq6podKO mice, half of which died by 10 months of age. CONCLUSIONS: These findings reveal a potential novel treatment strategy for those cases of human nephrotic syndrome that are caused by a primary dysfunction in the CoQ10 biosynthesis pathway.

19.
Essays Biochem ; 62(3): 361-376, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29980630

RESUMO

Coenzyme Q (ubiquinone or CoQ) is an essential lipid that plays a role in mitochondrial respiratory electron transport and serves as an important antioxidant. In human and yeast cells, CoQ synthesis derives from aromatic ring precursors and the isoprene biosynthetic pathway. Saccharomyces cerevisiae coq mutants provide a powerful model for our understanding of CoQ biosynthesis. This review focusses on the biosynthesis of CoQ in yeast and the relevance of this model to CoQ biosynthesis in human cells. The COQ1-COQ11 yeast genes are required for efficient biosynthesis of yeast CoQ. Expression of human homologs of yeast COQ1-COQ10 genes restore CoQ biosynthesis in the corresponding yeast coq mutants, indicating profound functional conservation. Thus, yeast provides a simple yet effective model to investigate and define the function and possible pathology of human COQ (yeast or human gene involved in CoQ biosynthesis) gene polymorphisms and mutations. Biosynthesis of CoQ in yeast and human cells depends on high molecular mass multisubunit complexes consisting of several of the COQ gene products, as well as CoQ itself and CoQ intermediates. The CoQ synthome in yeast or Complex Q in human cells, is essential for de novo biosynthesis of CoQ. Although some human CoQ deficiencies respond to dietary supplementation with CoQ, in general the uptake and assimilation of this very hydrophobic lipid is inefficient. Simple natural products may serve as alternate ring precursors in CoQ biosynthesis in both yeast and human cells, and these compounds may act to enhance biosynthesis of CoQ or may bypass certain deficient steps in the CoQ biosynthetic pathway.


Assuntos
Ataxia/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/tratamento farmacológico , Ataxia/genética , Genes Fúngicos , Genoma Humano , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/genética , Mutação , Parabenos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/biossíntese , Ubiquinona/genética , Ubiquinona/metabolismo , Ubiquinona/uso terapêutico
20.
Cell Chem Biol ; 25(2): 123-125, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452608

RESUMO

COQ8 proteins are homologs of atypical protein kinases required for the biosynthesis of coenzyme Q (CoQ). In this issue of Cell Chemical Biology, Reidenbach et al. (2018) show that COQ8 has an ATPase activity, required for CoQ biosynthesis, that is strongly activated by cardiolipin and small molecule mimics of early CoQ intermediates.


Assuntos
Saccharomyces cerevisiae , Ubiquinona/genética , Lipídeos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...