Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 44(10): 2149-2164, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152498

RESUMO

BACKGROUND/OBJECTIVES: Maintaining energy balance is important to ensure a healthy organism. However, energy partitioning, coordinating the distribution of sufficient energy to different organs and tissues is equally important, but the control of this process is largely unknown. In obesity, an increase in fat mass necessitates the production of additional bone mass to cope with the increase in bodyweight and processes need to be in place to communicate this new weight bearing demand. Here, we investigate the interaction between leptin and NPY, two factors critically involved in the regulation of both energy metabolism and bone mass, in this process. METHODS: We assessed the co-localization of leptin receptors on NPY neurons using RNAScope followed by a systematic examination of body composition and energy metabolism profiling in male and female mice lacking leptin receptors specifically in NPY neurons (Leprlox/lox;NPYCre/+). The effect of short-term switching between chow and high-fat diet was also examined in these mice. RESULTS: We uncovered that leptin receptor expression is greater on a subpopulation of NPY neurons in the arcuate that do not express AgRP. We further show that Leprlox/lox;NPYCre/+ mice exhibit significantly increased adiposity while bone mass is diminished. These body composition changes occur in the absence of alterations in food intake or energy expenditure, demonstrating a prominent role for leptin signaling in NPY neurons in the control of energy partitioning. Importantly however, when fed a high-fat diet, these mice display a switch in energy partitioning whereby they exhibit a significantly enhanced ability to increase their bone mass to match the increased bodyweight caused by higher caloric intake concurrent with attenuated adiposity. CONCLUSIONS: Taken together, these results demonstrate that leptin signaling in NPY neurons is critical for coordinating energy partitioning between fat and bone mass especially during situations of changes in energy balance.


Assuntos
Tecido Adiposo/metabolismo , Osso e Ossos/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Adiposidade , Animais , Composição Corporal , Dieta Hiperlipídica , Ingestão de Energia , Feminino , Masculino , Camundongos , Receptores para Leptina
2.
Cell Metab ; 30(1): 111-128.e6, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031093

RESUMO

Neuropeptide Y (NPY) exerts a powerful orexigenic effect in the hypothalamus. However, extra-hypothalamic nuclei also produce NPY, but its influence on energy homeostasis is unclear. Here we uncover a previously unknown feeding stimulatory pathway that is activated under conditions of stress in combination with calorie-dense food; NPY neurons in the central amygdala are responsible for an exacerbated response to a combined stress and high-fat-diet intervention. Central amygdala NPY neuron-specific Npy overexpression mimics the obese phenotype seen in a combined stress and high-fat-diet model, which is prevented by the selective ablation of Npy. Using food intake and energy expenditure as readouts, we demonstrate that selective activation of central amygdala NPY neurons results in increased food intake and decreased energy expenditure. Mechanistically, it is the diminished insulin signaling capacity on central amygdala NPY neurons under combined stress and high-fat-diet conditions that leads to the exaggerated development of obesity.


Assuntos
Tonsila do Cerebelo/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Animais , Temperatura Corporal , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/fisiologia , Eletrofisiologia , Metabolismo Energético/fisiologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Insulina/metabolismo , Masculino , Camundongos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
3.
J Neuroendocrinol ; 31(2): e12687, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30633834

RESUMO

The RANKL pathway is known to be an important aspect of the pathogenesis of oestrogen deficiency-induced bone loss. RANK deletion specifically in neuropeptide Y (NPY) neurones has been shown to enhance the ability of the skeleton to match increases in body weight caused by high-fat diet feeding, likely via the modulation of NPY levels. In the present study, we used ovariectomy in female mice to show that RANK deletion in NPY neurones attenuates bone loss caused by long-term oestrogen deficiency, particularly in the vertebral compartment. Ovariectomy led to a reduction in NPY expression levels in the arcuate nucleus of NPYcre/+ ;RANKlox/lox mice compared to NPYcre/+ ;RANKlox/+ controls. Because NPY deficient mice also displayed a similar protection against ovariectomy-induced bone loss, modulation of hypothalamic NPY signalling is the likely mechanism behind the protection from bone loss in the NPYcre/+ ;RANKlox/lox mice.


Assuntos
Reabsorção Óssea/metabolismo , Estrogênios/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Animais , Feminino , Camundongos Knockout , Ovariectomia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Transdução de Sinais
4.
J Exp Biol ; 219(Pt 5): 668-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747899

RESUMO

The fruit fly Drosophila melanogaster has emerged as a model organism for research on social interactions. Although recent studies have described how individuals interact on foods for nutrition and reproduction, the complex dynamics by which groups initially develop and disperse have received little attention. Here we investigated the dynamics of collective foraging decisions by D. melanogaster and their variation with group size and composition. Groups of adults and larvae facing a choice between two identical, nutritionally balanced food patches distributed themselves asymmetrically, thereby exploiting one patch more than the other. The speed of the collective decisions increased with group size, as a result of flies joining foods faster. However, smaller groups exhibited more pronounced distribution asymmetries than larger ones. Using computer simulations, we show how these non-linear phenomena can emerge from social attraction towards occupied food patches, whose effects add up or compete depending on group size. Our results open new opportunities for exploring complex dynamics of nutrient selection in simple and genetically tractable groups.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Comportamento Apetitivo , Comportamento de Escolha , Simulação por Computador , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Larva/fisiologia , Masculino , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...