Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3895, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127609

RESUMO

Ursodeoxycholic acid (UDCA) treatment can reduce itch and lower endogenous serum bile acids in intrahepatic cholestasis of pregnancy (ICP). We sought to determine how it could influence the gut environment in ICP to alter enterohepatic signalling. The gut microbiota and bile acid content were determined in faeces from 35 pregnant women (14 with uncomplicated pregnancies and 21 with ICP, 17 receiving UDCA). Faecal bile salt hydrolase activity was measured using a precipitation assay. Serum fibroblast growth factor 19 (FGF19) and 7α-hydroxy-4-cholesten-3-one (C4) concentrations were measured following a standardised diet for 21 hours. Women with a high ratio of Bacteroidetes to Firmicutes were more likely to be treated with UDCA (Fisher's exact test p = 0.0178) than those with a lower ratio. Bile salt hydrolase activity was reduced in women with low Bacteroidetes:Firmicutes. Women taking UDCA had higher faecal lithocholic acid (p < 0.0001), with more unconjugated bile acids than women with untreated ICP or uncomplicated pregnancy. UDCA-treatment increased serum FGF19, and reduced C4 (reflecting lower bile acid synthesis). During ICP, UDCA treatment can be associated with enrichment of the gut microbiota with Bacteroidetes. These demonstrate high bile salt hydrolase activity, which deconjugates bile acids enabling secondary modification to FXR agonists, enhancing enterohepatic feedback via FGF19.


Assuntos
Amidoidrolases/genética , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Colestase Intra-Hepática/microbiologia , Regulação Bacteriana da Expressão Gênica , Intestinos/microbiologia , Complicações na Gravidez/microbiologia , Ácido Ursodesoxicólico/farmacologia , Animais , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos , Gravidez
2.
Hepatology ; 70(1): 276-293, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30983011

RESUMO

Pregnancy is associated with progressive hypercholanemia, hypercholesterolemia, and hypertriglyceridemia, which can result in metabolic disease in susceptible women. Gut signals modify hepatic homeostatic pathways, linking intestinal content to metabolic activity. We sought to identify whether enteric endocrine signals contribute to raised serum bile acids observed in human and murine pregnancies, by measuring fibroblast growth factor (FGF) 19/15 protein and mRNA levels, and 7α-hydroxy-4-cholesten-3-one. Terminal ileal farnesoid X receptor (FXR)-mediated gene expression and apical sodium bile acid transporter (ASBT) protein concentration were measured by qPCR and western blotting. Shotgun whole-genome sequencing and ultra-performance liquid chromatography tandem mass spectrometry were used to determine the cecal microbiome and metabonome. Targeted and untargeted pathway analyses were performed to predict the systemic effects of the altered metagenome and metabolite profiles. Dietary CA supplementation was used to determine whether the observed alterations could be overcome by intestinal bile acids functioning as FXR agonists. Human and murine pregnancy were associated with reduced intestinal FXR signaling, with lower FGF19/15 and resultant increased hepatic bile acid synthesis. Terminal ileal ASBT protein was reduced in murine pregnancy. Cecal bile acid conjugation was reduced in pregnancy because of elevated bile salt hydrolase-producing Bacteroidetes. CA supplementation induced intestinal FXR signaling, which was not abrogated by pregnancy, with strikingly similar changes to the microbiota and metabonome as identified in pregnancy. Conclusion: The altered intestinal microbiota of pregnancy enhance bile acid deconjugation, reducing ileal bile acid uptake and lowering FXR induction in enterocytes. This exacerbates the effects mediated by reduced bile acid uptake transporters in pregnancy. Thus, in pregnant women and mice, there is reduced FGF19/15-mediated hepatic repression of hepatic bile acid synthesis, resulting in hypercholanemia.


Assuntos
Ácidos Cólicos/sangue , Microbioma Gastrointestinal , Reabsorção Intestinal , Gravidez/sangue , Receptores Citoplasmáticos e Nucleares/metabolismo , Amidoidrolases/genética , Animais , Bacteroides/isolamento & purificação , Ceco/efeitos dos fármacos , Ceco/microbiologia , Ácidos Cólicos/farmacologia , Enterócitos/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...