Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(11): e17353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613250

RESUMO

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N ̂ e = 50 and a <9% probability of reaching N ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N ̂ e than unlisted populations, and this was consistent across all taxonomic groups. N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.


Assuntos
Anfíbios , Conservação dos Recursos Naturais , Genética Populacional , Mamíferos , Densidade Demográfica , Animais , Anfíbios/genética , Anfíbios/classificação , Mamíferos/genética , Mamíferos/classificação , Fluxo Gênico , Aves/genética , Aves/classificação , Humanos , Endogamia , Deriva Genética , Plantas/genética , Plantas/classificação , Atividades Humanas
2.
Evol Appl ; 15(11): 1792-1805, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426123

RESUMO

Sustainable management of exploited populations benefits from integrating demographic and genetic considerations into assessments, as both play a role in determining harvest yields and population persistence. This is especially important in populations subject to size-selective harvest, because size selective harvesting has the potential to result in significant demographic, life-history, and genetic changes. We investigated harvest-induced changes in the effective number of breeders ( N ^ b ) for introduced brook trout populations (Salvelinus fontinalis) in alpine lakes from western Canada. Three populations were subject to 3 years of size-selective harvesting, while three control populations experienced no harvest. The N ^ c decreased consistently across all harvested populations (on average 60.8%) but fluctuated in control populations. There were no consistent changes in N ^ b between control or harvest populations, but one harvest population experienced a decrease in N ^ b of 63.2%. The N ^ b / N ^ c ratio increased consistently across harvest lakes; however we found no evidence of genetic compensation (where variance in reproductive success decreases at lower abundance) based on changes in family evenness ( FE ^ ) and the number of full-sibling families ( N ^ fam ). We found no relationship between FE ^ and N ^ c or between N ^ fam / N ^ c and FE ^ . We posit that change in N ^ b was buffered by constraints on breeding habitat prior to harvest, such that the same number of breeding sites were occupied before and after harvest. These results suggest that effective size in harvested populations may be resilient to considerable changes in Nc in the short-term, but it is still important to monitor exploited populations to assess the risk of inbreeding and ensure their long-term survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA