Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 539: 109104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643706

RESUMO

Cellulose nanocrystals (CNCs) are crystalline domains isolated from cellulosic fibers. They have been utilized in a wide range of applications, such as reinforcing fillers, antibacterial agents and manufacturing of biosensors. Whitin this context, the aim of this work was to obtain and analyze CNCs extracted from bacterial nanocellulose (BNC) using two distinct methods combined with milling pre-treatment: an acidic hydrolysis using 64 % sulfuric acid and an enzymatic hydrolysis using a commercial cellulase enzyme mixture. The CNCs obtained from the enzymatic route (e-CNCs) were observed to be spherical nanoparticles with diameter of 56 ± 11 nm. In contrast, the CNCs from the acid hydrolysis (a-CNCs) appeared as needle-shaped nanoparticles with a high aspect ratio with lengths/widths of 158 ± 64 nm/11 ± 2 nm. The surface zeta potential (ZP) of the a-CNCs was -30,8 mV, whereas the e-CNCs has a potential of +2.70 ± 3.32 mV, indicating that a-CNCs consisted of negatively charged particles with higher stability in solution. Although the acidic route resulted in nanocrystals with a slightly higher crystallinity index compared to the enzymatic route, e-CNCs was found to be more thermally stable than BNC and a-CNCs. Here, we also confirmed the safety of a-CNCs and e-CNCs using L929 cell line. Lastly, this article describes two different CNCs synthesis approaches that leads to the formation of nanoparticles with different dimensions, morphology and unique physicochemical properties. To the best of our knowledge, this is the first study to yield spherical nanoparticles as a result of BNC enzymatic treatment.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química , Hidrólise , Celulase/química , Celulase/metabolismo , Ácidos Sulfúricos/química , Animais , Camundongos , Tamanho da Partícula
2.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771781

RESUMO

As the development of nanotechnology progresses, organic electronics have gained momentum in recent years, and the production and rapid development of electronic devices based on organic semiconductors, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells (OPVs), and organic field effect transistors (OFETs), among others, have excelled. Their uses extend to the fabrication of intelligent screens for televisions and portable devices, due to their flexibility and versatility. Lately, great efforts have been reported in the literature to use them in the biomedical field, such as in photodynamic therapy. In tandem, there has been considerable interest in the design of advanced materials originating from natural sources. Bacterial nanocellulose (BNC) is a natural polymer synthesized by many microorganisms, notably by non-pathogenic strains of Komagataeibacter (K. xylinus, K. hansenii, and K. rhaeticus). BNC shows distinct physical and mechanical properties, including its insolubility, rapid biodegradability, tensile strength, elasticity, durability, and nontoxic and nonallergenic features, which make BNC ideal for many areas, including active and intelligent food packaging, sensors, water remediation, drug delivery, wound healing, and as conformable/flexible substrates for application in organic electronics. Here, we review BNC production methods, properties, and applications, focusing on electronic devices, especially OLEDs and flexible OLEDs (FOLEDs). Furthermore, we discuss the future progress of BNC-based flexible substrate nanocomposites.

3.
J Environ Manage ; 293: 112803, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089952

RESUMO

The reuse of açaí seeds is an organic approach for valorizing biomass, encouraging the public policies of circular economy, which reduces the human impact on the production chain processes. This research proposes an alternative for açaí seed as a filler in castor oil-based polyurethane, obtaining eco-sorbent to evaluate the sorption capacity for another impactful food industry by-product: waste cooking oil (WCO). Eco-sorbents were obtained with castor oil based-polyol and isocyanate (MDI) by mass mixing equal to 1:1 (OH:NCO), reinforced with açaí seed residue (5-20 wt%). The samples were characterized by techniques scanning electron microscopy (SEM), optical microscopy (OM), apparent density, contact angle, infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Sorption capacity and efficiency were evaluated as a function of the fiber content, with tests performed in times of 30-180 s in two systems: oil and oil/water. The results showed that the eco-sorbents had a hydrophobic nature (θ > 98.3°) and macroporous morphology (pore size from 152 to 119 µm), which allowed the adsorption of residual cooking oil by the porous structure. The kinetics study showed that the sample with greater fiber content (15% wt.) reached the equilibrium in a short time compared to the neat PU for the oil system, with a sorption capacity of 9.50 g g-1 in the first 30 s. For the oil/water system, an opposite behavior could be observed, with a sorption capacity of 9.98 g g-1 in the 150 s equilibrium time. The Langmuir isotherm model presented a maximum adsorption capacity of 10.42 g g-1. However, the Freundlich isotherm model had a better fit to the experimental data with R2 (0.97) and lower chi-square (0.159), showing favorable adsorption (n = 1.496). Thus, it was proved that the weak interactions (connection H) and the binding energy of the predominant physisorption for the oil/water system. Thus, developed eco-sorbents are an excellent option for the sorption of WCO.


Assuntos
Óleo de Rícino , Poluentes Químicos da Água , Adsorção , Biomassa , Culinária , Humanos , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
4.
J Inorg Biochem ; 212: 111247, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920435

RESUMO

The aims of this work were to evaluate the antibacterial and antiproliferative potential in vitro of the metal complex with 4-aminobenzoic acid (Ag-pABA) and a drug delivery system based on bacterial cellulose (BC-Ag-pABA). The Ag-pABA complex was characterized by elemental analysis, high resolution mass spectrometry and single-crystal X-ray diffraction techniques, which indicated a 1:2 metal/pABA composition plus a nitrate ion coordinated to silver by the oxygen atom, with the coordination formula [Ag (C7H7NO2)2(NO3)]. The coordination of pABA to the silver ion occurred by the nitrogen atom. The in vitro antibacterial activity of the complex evaluated by minimum inhibitory concentration assays demonstrated the effective growth inhibitory activity against Gram-positive, Gram-negative biofilm producers and acid-alcohol resistant Bacillus. The antiproliferative activities against a panel of eight tumor cells demonstrated the activity of the complex with a significant selectivity index (SI). The DNA interaction capacity and the Ames Test indicated the absence of mutagenicity. The BC-Ag-pABA composite showed an effective capacity of sustained release of Ag-pABA. The observed results validate further studies on its mechanisms of action and the conditions that mediate the in vivo biological effects using animal models to confirm its safety and effectiveness for treatment of skin and soft tissues infected by bacterial pathogens, urinary tract infections and cancer.


Assuntos
Ácido 4-Aminobenzoico/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Celulose/química , Prata/farmacologia , Antibacterianos/química , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...