Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(3): e0033523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319218

RESUMO

Mycobacterium abscessus is increasingly recognized for causing infections that are notoriously difficult to treat, owing to its large arsenal of intrinsic antibiotic resistance mechanisms. Tools for the genetic manipulation of the pathogen are critical for enabling a better understanding of M. abscessus biology, pathogenesis, and antibiotic resistance mechanisms. However, existing methods are largely recombination-based, which are relatively inefficient. Meanwhile, CRISPR/Cas9 has revolutionized the field of genome editing including its recent adaptation for use in mycobacteria. In this study, we report a streamlined and efficient method for rapid genetic disruptions in M. abscessus. Harnessing the CRISPR1 loci from Streptococcus thermophilus, we have developed a dual-plasmid workflow that introduces Cas9 and sgRNA cassettes in separate steps but requires no other additional factors to engineer mutations in single genes or multiple genes simultaneously or sequentially using multiple targeting sgRNAs. Importantly, the efficiency of mutant generation is several orders of magnitude higher than reported for homologous recombination-based methods. This work, thus, reports the first application of CRISPR/Cas9 for gene editing in M. abscessus and is an important tool in the arsenal for the genetic manipulation of this human pathogen. IMPORTANCE: Mycobacterium abscessus is an opportunistic pathogen of increasing clinical importance due to its poor clinical outcomes and limited treatment options. Drug discovery and development in this highly antibiotic-resistant species will require further understanding of M. abscessus biology, pathogenesis, and antibiotic resistance mechanisms. However, existing methods for facile genetic engineering are relatively inefficient. This study reports on the first application of CRISPR/Cas9 for gene editing in M. abscessus using a dual-plasmid workflow. We establish that our method is easily programmable, efficient, and versatile for genetic disruptions in M. abscessus. This is a critical advancement to facilitating targeted gene function studies in this emerging pathogen.


Assuntos
Sistemas CRISPR-Cas , Mycobacterium abscessus , Humanos , RNA Guia de Sistemas CRISPR-Cas , Mycobacterium abscessus/genética , Edição de Genes/métodos , Plasmídeos/genética
2.
mBio ; 15(2): e0320823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236034

RESUMO

Mycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Ácidos Graxos/metabolismo , Antibacterianos/farmacologia , Carbono/metabolismo , Lipase/metabolismo
3.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645903

RESUMO

Bacterial infection involves a complex interaction between the pathogen and host where the outcome of infection is not solely determined by pathogen eradication. To identify small molecules that promote host survival by altering the host-pathogen dynamic, we conducted an in vivo chemical screen using zebrafish embryos and found that treatment with 3-hydroxy-kynurenine protects from lethal gram-negative bacterial infection. 3-hydroxy-kynurenine, a metabolite produced through host tryptophan metabolism, has no direct antibacterial activity but enhances host survival by restricting bacterial expansion in macrophages by targeting kainate-sensitive glutamate receptors. These findings reveal new mechanisms by which tryptophan metabolism and kainate-sensitive glutamate receptors function and interact to modulate immunity, with significant implications for the coordination between the immune and nervous systems in pathological conditions.

4.
J Neuroinflammation ; 19(1): 170, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765004

RESUMO

Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.


Assuntos
Microbiota , Peixe-Zebra , Animais , Encéfalo , Homeostase , Sistema Imunitário
5.
Cell Chem Biol ; 29(5): 716-729, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35523184

RESUMO

The golden age of antibiotic discovery in the 1940s-1960s saw the development and deployment of many different classes of antibiotics, revolutionizing the field of medicine. Since that time, our ability to discover antibiotics of novel structural classes or mechanisms has not kept pace with the ever-growing threat of antibiotic resistance. Recently, advances at the intersection of genomics and chemical biology have enabled efforts to better define the vulnerabilities of essential gene targets, to develop sophisticated whole-cell chemical screening methods that reveal target biology early, and to elucidate small molecule targets and modes of action more effectively. These new technologies have the potential to expand the chemical diversity of antibiotic candidates, as well as the breadth of targets. We illustrate how the latest tools of genomics and chemical biology are being integrated to better understand pathogen vulnerabilities and antibiotic mechanisms in order to inform a new era of antibiotic discovery.


Assuntos
Antibacterianos , Genes Essenciais , Antibacterianos/química , Genômica
6.
Methods Mol Biol ; 2377: 179-197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34709617

RESUMO

Transposon-insertion sequencing (Tn-Seq) allows for identification of bacterial genes and pathways essential for growth under a given condition. A transposon mutant is created by the stable and random integration of a transposable element into a genome of interest, followed by a period of outgrowth and selection for relative fitness on one or more growth media. By pooling hundreds of thousands of mutants, sequencing the transposon-genomic DNA junctions, and mapping sequencing reads to the genome, one can identify an abundance of reads in nonessential insertion regions and the absence of reads in essential regions and thus identify which genes are essential for a given growth condition. By performing this method iteratively across multiple strains and growth conditions, one can define a core essential genome for a species. Here, we describe this methodology in detail and its application for the species Pseudomonas aeruginosa, from generating mutants to the analysis of nonessential versus essential genes using the freely available software "FiTnEss".


Assuntos
Pseudomonas aeruginosa , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Genes Essenciais , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Insercional , Pseudomonas aeruginosa/genética
8.
Nat Med ; 26(5): 705-711, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284589

RESUMO

Among the most urgent public health threats is the worldwide emergence of carbapenem-resistant Enterobacteriaceae1-4, which are resistant to the antibiotic class of 'last resort'. In the United States and Europe, carbapenem-resistant strains of the Klebsiella pneumoniae ST258 (ref. 5) sequence type are dominant, endemic6-8 and associated with high mortality6,9,10. We report the global evolution of pathogenicity in carbapenem-resistant K. pneumoniae, resulting in the repeated convergence of virulence and carbapenem resistance in the United States and Europe, dating back to as early as 2009. We demonstrate that K. pneumoniae can enhance its pathogenicity by adopting two opposing infection programs through easily acquired gain- and loss-of-function mutations. Single-nucleotide polymorphisms in the capsule biosynthesis gene wzc lead to hypercapsule production, which confers phagocytosis resistance, enhanced dissemination and increased mortality in animal models. In contrast, mutations disrupting capsule biosynthesis genes impair capsule production, which enhances epithelial cell invasion, in vitro biofilm formation and persistence in urinary tract infections. These two types of capsule mutants have emerged repeatedly and independently in Europe and the United States, with hypercapsule mutants associated with bloodstream infections and capsule-deficient mutants associated with urinary tract infections. In the latter case, drug-tolerant K. pneumoniae can persist to yield potentially untreatable, persistent infection.


Assuntos
Adaptação Biológica/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Evolução Molecular , Klebsiella pneumoniae/genética , Virulência/genética , Resistência beta-Lactâmica/genética , Adulto , Animais , Cápsulas Bacterianas/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/classificação , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/patogenicidade , Carbapenêmicos/uso terapêutico , Células Cultivadas , Feminino , Genoma Bacteriano , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/urina , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Filogenia , Polimorfismo de Nucleotídeo Único , Infecções Urinárias/microbiologia , Infecções Urinárias/urina , Peixe-Zebra
9.
Proc Natl Acad Sci U S A ; 116(20): 10072-10080, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036669

RESUMO

Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. While numerous factors contributed to the disappointing yield, one factor was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both the genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains of Pseudomonas aeruginosa on five different media and developed a statistical model, FiTnEss, to classify genes as essential versus nonessential across all strain-medium combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of four strains was typically sufficient in P. aeruginosa to converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and thus to represent attractive targets for novel drug discovery.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa/genética , Elementos de DNA Transponíveis , Genes Essenciais , Modelos Estatísticos
10.
Nat Chem Biol ; 14(4): 331-341, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556098

RESUMO

To date, antibiotics have been identified on the basis of their ability to kill bacteria or inhibit their growth rather than directly for their capacity to improve clinical outcomes of infected patients. Although historically successful, this approach has led to the development of an antibiotic armamentarium that suffers from a number of shortcomings, including the inevitable emergence of resistance and, in certain infections, suboptimal efficacy leading to long treatment durations, infection recurrence, or high mortality and morbidity rates despite apparent bacterial sterilization. Conventional antibiotics fail to address the complexities of in vivo bacterial physiology and virulence, as well as the role of the host underlying the complex, dynamic interactions that cause disease. New interventions are needed, aimed at host outcome rather than microbiological cure. Here we review the role of screening models for cellular and whole-organism infection, including worms, flies, zebrafish, and mice, to identify novel therapeutic strategies and discuss their future implications.


Assuntos
Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana , Animais , Bactérias/efeitos dos fármacos , Infecções Bacterianas/patologia , Caenorhabditis elegans , Drosophila melanogaster , Humanos , Camundongos , Fenótipo , Virulência , Peixe-Zebra
11.
Nat Chem Biol ; 13(9): 943-950, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671682

RESUMO

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-ß-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.


Assuntos
Antituberculosos , Azetidinas/química , Mycobacterium tuberculosis/enzimologia , Bibliotecas de Moléculas Pequenas , Triptofano Sintase/antagonistas & inibidores , Regulação Alostérica , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Azetidinas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Trends Microbiol ; 22(2): 53-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370463

RESUMO

Bacterial toxins and small molecules are useful tools for studying eukaryotic cell biology. In a recent issue of PNAS, Gillespie and colleagues describe a novel small molecule inhibitor of bacterial toxins and virus trafficking through the endocytic pathway, 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), that prevents transport from early to late endosomes.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Endossomos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Semicarbazonas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Humanos
13.
Proc Natl Acad Sci U S A ; 110(28): 11565-70, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798446

RESUMO

Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M. tuberculosis by inhibiting fatty acid degradation protein D32 (FadD32), an enzyme that is required for biosynthesis of cell-wall mycolic acids. These substituted coumarin inhibitors directly inhibit the acyl-acyl carrier protein synthetase activity of FadD32. They effectively block bacterial replication both in vitro and in animal models of tuberculosis, validating FadD32 as a target for antibiotic development that works in the same pathway as the established antibiotic isoniazid. Targeting new steps in well-validated biosynthetic pathways in antitubercular therapy is a powerful strategy that removes much of the usual uncertainty surrounding new targets and in vivo clinical efficacy, while circumventing existing resistance to established targets.


Assuntos
Proteínas de Bactérias/efeitos dos fármacos , Cumarínicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Micólicos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Peixe-Zebra
14.
Proc Natl Acad Sci U S A ; 110(24): 9932-7, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716698

RESUMO

Bacterial toxins have evolved successful strategies for coopting host proteins to access the cytosol of host cells. Anthrax lethal factor (LF) enters the cytosol through pores in the endosomal membrane formed by anthrax protective antigen. Although in vitro models using planar lipid bilayers have shown that translocation can occur in the absence of cellular factors, recent studies using intact endosomes indicate that host factors are required for translocation in the cellular environment. In this study, we describe a high-throughput shRNA screen to identify host factors required for anthrax lethal toxin-induced cell death. The cytosolic chaperonin complex chaperonin containing t-complex protein 1 (CCT) was identified, and subsequent studies showed that CCT is required for efficient delivery of LF and related fusion proteins into the cytosol. We further show that knockdown of CCT inhibits the acid-induced delivery of LF and the fusion protein LFN-Bla (N terminal domain of LF fused to ß-lactamase) across the plasma membrane of intact cells. Together, these results suggest that CCT is required for efficient delivery of enzymatically active toxin to the cytosol and are consistent with a direct role for CCT in translocation of LF through the protective antigen pore.


Assuntos
Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Chaperonina com TCP-1/metabolismo , Citosol/metabolismo , Animais , Bacillus anthracis/fisiologia , Western Blotting , Linhagem Celular , Chaperonina com TCP-1/genética , Citosol/microbiologia , Endossomos/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Transporte Proteico/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Lactamases/genética , beta-Lactamases/metabolismo
15.
J Bacteriol ; 194(23): 6537-47, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23024348

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is capable of causing both acute and chronic infections. P. aeruginosa virulence is subject to sophisticated regulatory control by two-component systems that enable it to sense and respond to environmental stimuli. We recently reported that the two-component sensor KinB regulates virulence in acute P. aeruginosa infection. Furthermore, it regulates acute-virulence-associated phenotypes such as pyocyanin production, elastase production, and motility in a manner independent of its kinase activity. Here we show that KinB regulates virulence through the global sigma factor AlgU, which plays a key role in repressing P. aeruginosa acute-virulence factors, and through its cognate response regulator AlgB. However, we show that rather than phosphorylating AlgB, KinB's primary role in the regulation of virulence is to act as a phosphatase to dephosphorylate AlgB and alleviate phosphorylated AlgB's repression of acute virulence.


Assuntos
Regulação Bacteriana da Expressão Gênica , Monoéster Fosfórico Hidrolases/metabolismo , Pseudomonas aeruginosa/enzimologia , Fosforilação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Virulência , Fatores de Virulência/biossíntese
16.
J Bacteriol ; 193(12): 2989-99, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515773

RESUMO

Two-component sensors are widely used by bacteria to sense and respond to the environment. Pseudomonas aeruginosa has one of the largest sets of two-component sensors known in bacteria, which likely contributes to its unique ability to adapt to multiple environments, including the human host. Several of these two-component sensors, such as GacS and RetS, have been shown to play roles in virulence in rodent infection models. However, the role and function of the majority of these two-component sensors remain unknown. Danio rerio is a recently characterized model host for pathogenesis-related studies that is amenable to higher-throughput analysis than mammalian models. Using zebrafish embryos as a model host, we have systematically tested the role of 60 two-component sensors and identified 6 sensors that are required for P. aeruginosa virulence. We found that KinB is required for acute infection in zebrafish embryos and regulates a number of virulence-associated phenotypes, including quorum sensing, biofilm formation, and motility. Its regulation of these phenotypes is independent of its kinase activity and its known response regulator AlgB, suggesting that it does not fit the canonical two-component sensor-response regulator model.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fosfotransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Animais , Proteínas de Bactérias/genética , Embrião não Mamífero/microbiologia , Fosfotransferases/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Virulência , Peixe-Zebra/embriologia
17.
Infect Immun ; 77(4): 1293-303, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168742

RESUMO

Zebrafish (Danio rerio) have a number of strengths as a host model for infection, including genetic tractability, a vertebrate immune system similar to that of mammals, ease and scale of laboratory handling, which allows analysis with reasonable throughput, and transparency, which facilitates visualization of the infection. With these advantages in mind, we examined whether zebrafish could be used to study Pseudomonas aeruginosa pathogenesis and found that infection of zebrafish embryos with live P. aeruginosa (PA14 or PAO1) by microinjection results in embryonic death, unlike infection with Escherichia coli or heat-killed P. aeruginosa, which has no effect. Similar to studies with mice, P. aeruginosa mutants deficient in type three secretion (pscD) or quorum sensing (lasR and mvfR) are attenuated in zebrafish embryos infected at 50 h postfertilization (hpf), a developmental stage when both macrophages and neutrophils are present. In contrast, embryos infected at 28 hpf, when only macrophages are initially present, succumb to lethal challenge with far fewer P. aeruginosa cells than those required for embryos infected at 50 hpf, are susceptible to infection with lasR and pscD deletion mutants, and are moderately resistant to infection with an mvfR mutant. Finally, we show that we can control the outcome of infection through the use of morpholinos, which allow us to shift immune cell numbers, or small molecules (antibiotics), which rescue embryos from lethal challenge. Thus, zebrafish are a novel host model that is well suited for studying the interactions among individual pathogenic functions of P. aeruginosa, the role of individual components of host immune defense, and small-molecule modulators of infection.


Assuntos
Modelos Animais de Doenças , Embrião não Mamífero/microbiologia , Interações Hospedeiro-Patógeno , Infecções por Pseudomonas , Pseudomonas aeruginosa/patogenicidade , Peixe-Zebra , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Embrião não Mamífero/metabolismo , Humanos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Virulência , Peixe-Zebra/embriologia , Peixe-Zebra/microbiologia
18.
Nat Chem Biol ; 3(9): 541-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17710100

RESUMO

Clinically significant antibiotic resistance has evolved against virtually every antibiotic deployed. Yet the development of new classes of antibiotics has lagged far behind our growing need for such drugs. Rather than focusing on therapeutics that target in vitro viability, much like conventional antibiotics, an alternative approach is to target functions essential for infection, such as virulence factors required to cause host damage and disease. This approach has several potential advantages including expanding the repertoire of bacterial targets, preserving the host endogenous microbiome, and exerting less selective pressure, which may result in decreased resistance. We review new approaches to targeting virulence, discuss their advantages and disadvantages, and propose that in addition to targeting virulence, new antimicrobial development strategies should be expanded to include targeting bacterial gene functions that are essential for in vivo viability. We highlight both new advances in identifying these functions and prospects for antimicrobial discovery targeting this unexploited area.


Assuntos
Anti-Infecciosos/farmacologia , Fatores de Virulência/antagonistas & inibidores , Virulência/efeitos dos fármacos , Anti-Infecciosos/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Genes Bacterianos , Percepção de Quorum/efeitos dos fármacos , Virulência/genética
19.
J Biol Chem ; 280(21): 20247-52, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15757898

RESUMO

Lymphoid cells of the vertebrate immune system rely on factors in the non-homologous end-joining (NHEJ) DNA repair pathway to form signal joints during V(D)J recombination. Unlike other end-joining reactions, signal joint formation is a specialized case of NHEJ that also requires the lymphoid-specific RAG proteins. Whether V(D)J recombination requires the Mre11-Rad50-Nbs1 complex remains an open question, as null mutations in any member of the complex are lethal in mammals. However, Saccharomyces cerevisiae strains carrying null mutations in components of the homologous Mre11p-Rad50p-Xrs2p (MRX) complex are viable. We therefore took advantage of a recently developed V(D)J recombination assay in yeast to assess the role of MRX in V(D)J joining. Here we confirmed that signal joint formation in yeast is dependent on the same NHEJ factors known to be required in mammalian cells. In addition, we showed an absolute requirement for the MRX complex in signal joining, suggesting that the Mre11-Rad50-Nbs1 complex may be required for signal joint formation in mammalian cells as well.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases/fisiologia , Exodesoxirribonucleases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , VDJ Recombinases/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Genes de Imunoglobulinas , Genes Codificadores dos Receptores de Linfócitos T , Mutagênese , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Cell ; 12(2): 489-99, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14536087

RESUMO

Antigen receptor genes are assembled during lymphoid development by a specialized recombination reaction normally observed only in cells of the vertebrate immune system. Here, we show that expression in Saccharomyces cerevisiae of murine RAG1 and RAG2, the lymphoid-specific components of the V(D)J recombinase, is sufficient to induce V(D)J cleavage and rejoining in this lower eukaryote. The RAG proteins cleave recombination substrates introduced into yeast cells, generating signal ends that can be joined to form signal joints. These signal joints are precise, as in mammalian cells, and their formation is dependent on a yeast nonhomologous end-joining protein, the XRCC4 homolog LIF1. Moreover, joining of SmaI-generated blunt ends is generally imprecise in the yeast strain used here, suggesting that the RAG proteins influence signal-end joining. Cleaved signal ends are also transposed into new sites in DNA, allowing RAG-induced transposition to be studied in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Saccharomyces cerevisiae/metabolismo , VDJ Recombinases/metabolismo , Reparo do DNA , DNA-Citosina Metilases/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genoma Fúngico , Modelos Biológicos , Modelos Genéticos , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Recombinação Genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...