Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258465

RESUMO

ObjectivesTo assess the performance of antigen-based rapid diagnostic tests (Ag-RDTs) for SARS CoV-2 when implemented for large-scale universal screening of asymptomatic individuals. MethodsThis study presents data from a pragmatic implementation study for universal Ag-RDT-based screening at a tertiary care hospital in Germany where all incoming patients without symptoms suggestive of SARS-CoV-2 were screened with an Ag-RDT prior to admission since October 2020. ResultIn total, 49,542 RDTs were performed in 27,199 asymptomatic individuals over a duration of five months. Out of 222 positive results, 196 underwent in-house confirmatory testing with PCR, out of which 170 were confirmed positive, indicating a positive predictive value (PPV) of 86.7%. Negative Ag-RDTs were not routinely tested with PCR, but a total of 94 cases of false negative Ag-RDTs were detected due to PCR tests being performed within the following five days with a median CT-value of 33. ConclusionsThis study provides evidence that Ag-RDTs can have a high diagnostic yield for transmission relevant infections with limited false-positives when utilized at the point of care on asymptomatic patients and thus can be a suitable public-health test for universal screening.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20243725

RESUMO

BackgroundNasopharyngeal (NP) swab samples for antigen-detecting rapid diagnostic tests (Ag-RDTs) require qualified healthcare professionals and are frequently perceived as uncomfortable by patients. MethodsWe performed a manufacturer-independent, prospective diagnostic accuracy study, comparing professional-collected nasal mid-turbinate (NMT) to nasopharyngeal swab, using the test kits of a WHO-listed SARS-CoV-2 Ag-RDT (STANDARD Q COVID-19 Ag Test, SD Biosensor), which is also being distributed by Roche. Individuals with high suspicion for COVID-19 infection were tested. The reference standard was RT-PCR using a combined oro-/nasopharyngeal swab sample. Percent positive and negative agreement, as well as sensitivity and specificity were calculated. ResultsAmong the 179 participants, 41 (22.9%) tested positive for SARS-CoV-2 by RT-PCR. The positive percent agreement of the two different sampling techniques for the Ag-RDT was 93.5% (CI 79.3-98.2). The negative percent agreement was 95.9% (CI 91.4-98.1). The Ag-RDT with NMT-sampling showed a sensitivity of 80.5% (33/41 PCR positives detected; CI 66.0-89.8) and specificity of 98.6% (CI 94.9-99.6) compared to RT-PCR. The sensitivity with NP-sampling was 73.2% (30/41 PCR positives detected; CI 58.1-84.3) and specificity was 99.3% (CI 96.0-100). In patients with high viral load (>7.0 log10 SARS-CoV-2 RNA copies/swab), the sensitivity of the Ag-RDT with NMT-sampling was 100% and 94.7% with NP-sampling. ConclusionThis study demonstrates that sensitivity of a WHO-listed SARS-CoV-2 Ag-RDT using a professional nasal-sampling kit is at least equal to that of the NP-sampling kit, although confidence intervals overlap. Of note, differences in the IFUs of the test procedures could have contributed to different sensitivities. NMT-sampling can be performed with less training, reduces patient discomfort, and it enables scaling of antigen testing strategies. Additional studies of patient self-sampling should be considered to further facilitate the scaling-up of Ag-RDT testing.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20230748

RESUMO

BackgroundNasopharyngeal (NP) swabs are considered the highest-yield sample for diagnostic testing for respiratory viruses, including SARS-CoV-2. The need to increase capacity for SARS-CoV-2 testing in a variety of settings, combined with shortages of sample collection supplies, have motivated a search for alternative sample types with high sensitivity. We systematically reviewed the literature to understand the performance of alternative sample types compared to NP swabs. MethodsWe systematically searched PubMed, Google Scholar, medRxiv, and bioRxiv (last retrieval October 1st, 2020) for comparative studies of alternative specimen types [saliva, oropharyngeal (OP), and nasal (NS) swabs] versus NP swabs for SARS-CoV-2 diagnosis using nucleic acid amplification testing (NAAT). A logistic-normal random-effects meta-analysis was performed to calculate % positive alternative-specimen, % positive NP, and % dual positives overall and in sub-groups. The QUADAS 2 tool was used to assess bias. ResultsFrom 1,253 unique citations, we identified 25 saliva, 11 NS, 6 OP, and 4 OP/NS studies meeting inclusion criteria. Three specimen types captured lower % positives [NS (0.82, 95% CI: 0.73-0.90), OP (0.84, 95% CI: 0.57-1.0), saliva (0.88, 95% CI: 0.81 - 0.93)] than NP swabs, while combined OP/NS matched NP performance (0.97, 95% CI: 0.90-1.0). Absence of RNA extraction (saliva) and utilization of a more sensitive NAAT (NS) substantially decreased alternative-specimen yield. ConclusionsNP swabs remain the gold standard for diagnosis of SARS-CoV-2, although alternative specimens are promising. Much remains unknown about the impact of variations in specimen collection, processing protocols, and population (pediatric vs. adult, late vs. early in disease course) and head-to head studies of sampling strategies are urgently needed.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20228858

RESUMO

BackgroundCOVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19. MethodsWe systematically searched multiple databases (PubMed, Web of Science Core Collection, MedRvix and bioRvix) for publications from December 2019 to May 31st 2020. Random-effects meta-analyses were used to calculate pooled odds ratios and differences of medians between (1) patients admitted to ICU versus non-ICU patients and (2) patients who died versus those who survived. We adapted an existing Cochrane risk-of-bias assessment tool for outcome studies. ResultsOf 6,702 unique citations, we included 88 articles with 69,762 patients. There was concern for bias across all articles included. Age was strongly associated with mortality with a difference of medians (DoM) of 13.15 years (95% confidence interval (CI) 11.37 to 14.94) between those who died and those who survived. We found a clinically relevant difference between non-survivors and survivors for C-reactive protein (CRP; DoM 69.10, CI 50.43 to 87.77), lactate dehydrogenase (LDH; DoM 189.49, CI 155.00 to 223.98), cardiac troponin I (cTnI; DoM 21.88, CI 9.78 to 33.99) and D-Dimer (DoM 1.29mg/L, CI 0.9 - 1.69). Furthermore, cerebrovascular disease was the co-morbidity most strongly associated with mortality (Odds Ratio 3.45, CI 2.42 to 4.91) and ICU admission (Odds Ratio 5.88, CI 2.35 to 14.73). DiscussionThis comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors in predicting severe COVID-19 outcomes and will inform decision analytical tools to support clinical decision-making. SummaryIn this systematic review we meta-analyzed 88 articles for risk factors of ICU admission and mortality in COVID-19. We found age, cerebrovascular disease, CRP, LDH and cTnI are the most important risk-factors for ICU admission or mortality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...