Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(11): e1010502, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318581

RESUMO

The atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice. Bcl3flx/flx Zbtb46 cre mice were as susceptible to lethal T. gondii infection as total Bcl3-/- mice and generated poor Th1 immune responses. Consistent with this, compared to wildtype controls, splenic Xcr1+ Bcl3-deficient cDC1 cells were defective in presenting Ova antigen to OT-I cells both for Ova257-264 peptide and after infection with Ovalbumin-expressing T. gondii. Moreover, splenic CD4+ and CD8+ T cells from infected Bcl3flx/flx Zbtb46 cre mice exhibited decreased T. gondii-specific priming as revealed by both reduced cytokine production and reduced T. gondii-specific tetramer staining. In vitro differentiation of cDCs from bone marrow progenitors also revealed Bcl3-dependent cDC-specific antigen-presentation activity. Consistent with this, splenocyte single cell RNA seq (scRNAseq) in infected mice revealed Bcl3-dependent expression of genes involved in antigen processing in cDCs. We also identified by scRNAseq, a unique Bcl3-dependent hybrid subpopulation of Zbtb46+ DCs co-expressing the monocyte/macrophage transcription factor Lysozyme M. This subpopulation exhibited Bcl3-dependent expansion after infection. Likewise, by flow cytometry we identified two T. gondii-induced hybrid subpopulations of Bcl3-dependent cDC1 and cDC2 cells both expressing monocyte/macrophage markers, designated as icDC1 and icDC2. Together, our results indicate that Bcl3 in classical DCs is a major determinant of protective T cell responses and survival in T. gondii-infection.


Assuntos
Proteína 3 do Linfoma de Células B , Toxoplasma , Toxoplasmose , Animais , Camundongos , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteína 3 do Linfoma de Células B/metabolismo
2.
Immunol Cell Biol ; 99(6): 586-595, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33525048

RESUMO

Regulatory T cells (Tregs) exert inhibitory function under various physiological conditions and adopt diverse characteristics following environmental cues. Multiple subsets of Tregs expressing master transcription factors of helper T cells such as RORγt, T-bet, Gata3 and PPARγ have been characterized, but the molecular mechanism governing the differentiation of these subsets remains largely unknown. Here we report that the atypical IκB protein family member Bcl-3 suppresses RORγt+ Treg accumulation. The suppressive effect of Bcl-3 was particularly evident in the mouse immune tolerance model of anti-CD3 therapy. Using conditional knockout mice, we illustrate that loss of Bcl-3 specifically in Tregs was sufficient to boost RORγt+ Treg formation and resistance of mice to dextran sulfate sodium-induced colitis. We further demonstrate the suppressive effect of Bcl-3 on RORγt+ Treg differentiation in vitro. Our results reveal a novel role of nuclear factor-kappa B signaling pathways in Treg subset differentiation that may have clinical implications in immunotherapy.


Assuntos
Colite , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Animais , Proteína 3 do Linfoma de Células B , Diferenciação Celular , Colite/induzido quimicamente , Fatores de Transcrição Forkhead , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos T Reguladores , Células Th17
3.
Blood Adv ; 5(3): 745-755, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560391

RESUMO

There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.


Assuntos
NF-kappa B , Células Precursoras de Linfócitos B , Animais , Linfócitos B , Medula Óssea , Células da Medula Óssea , Camundongos
4.
PLoS Pathog ; 17(1): e1009249, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508001

RESUMO

Bcl-3 is an atypical member of the IκB family that acts in the nucleus to modulate transcription of many NF-κB targets in a highly context-dependent manner. Accordingly, complete Bcl-3-/- mice have diverse defects in both innate and adaptive immune responses; however, direct effects of Bcl-3 action in individual immune cell types have not been clearly defined. Here, we document a cell-autonomous role for Bcl-3 in CD8+ T cell differentiation during the response to lymphocytic choriomeningitis virus infection. Single-cell RNA-seq and flow cytometric analysis of virus-specific Bcl3-/- CD8+ T cells revealed that differentiation was skewed towards terminal effector cells at the expense of memory precursor effector cells (MPECs). Accordingly, Bcl3-/- CD8+ T cells exhibited reduced memory cell formation and a defective recall response. Conversely, Bcl-3-overexpression in transgenic CD8+ T cells enhanced MPEC formation but reduced effector cell differentiation. Together, our results establish Bcl-3 as an autonomous determinant of memory/terminal effector cell balance during CD8+ T cell differentiation in response to acute viral infection. Our results provide proof-of-principle for targeting Bcl-3 pharmacologically to optimize adaptive immune responses to infectious agents, cancer cells, vaccines and other stimuli that induce CD8+ T cell differentiation.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , NF-kappa B/imunologia , Animais , Proteína 3 do Linfoma de Células B/genética , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência de RNA , Análise de Célula Única
5.
Eur J Immunol ; 51(1): 197-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652549

RESUMO

Bcl-3 is an atypical member of the IκB family that modulates NF-κB activity in nuclei. lpr mice carry the lpr mutation in Fas, resulting in functional loss of this death receptor; they serve as models for lupus erythematosus and autoimmune lymphoproliferation syndrome (ALPS). To explore the biologic roles of Bcl-3 in this disease model, we generated BL6/lpr mice lacking Bcl-3. Unlike lpr mice on an MRL background, BL6/lpr mice present with very mild lupus- or ALPS-like phenotypes. Bcl-3 KO BL6/lpr mice, however, developed severe splenomegaly, dramatically increased numbers of double negative T cells - a hallmark of human lupus, ALPS, and MRL/lpr mice - and exhibited inflammation in multiple organs, despite low levels of autoantibodies, similar to those in BL6/lpr mice. Loss of Bcl-3 specifically in T cells exacerbated select lupus-like phenotypes, specifically organ infiltration. Mechanistically, elevated levels of Tnfα in Bcl-3 KO BL6/lpr mice may promote lupus-like phenotypes, since loss of Tnfα in these mice reversed the pathology due to loss of Bcl-3. Contrary to the inhibitory functions of Bcl-3 revealed here, this regulator has also been shown to promote inflammation in different settings. Our findings highlight the profound, yet highly context-dependent roles of Bcl-3 in the development of inflammation-associated pathology.


Assuntos
Proteína 3 do Linfoma de Células B/imunologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/prevenção & controle , Proteína 3 do Linfoma de Células B/deficiência , Proteína 3 do Linfoma de Células B/genética , Modelos Animais de Doenças , Feminino , Rim/imunologia , Rim/patologia , Fígado/imunologia , Fígado/patologia , Pulmão/imunologia , Pulmão/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Fenótipo , Esplenomegalia/genética , Esplenomegalia/imunologia , Esplenomegalia/prevenção & controle , Fator de Necrose Tumoral alfa/imunologia
6.
J Invest Dermatol ; 140(1): 143-151.e3, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252033

RESUMO

IL-17 cytokines, in particular IL-17A, are critical effectors in psoriasis. Antibodies that block IL-17A are highly efficacious in treating psoriasis. Likewise, disruption of IL-17 cytokines signaling, such as via the loss of the adaptor CIKS/Act1, ameliorates inflammation in mouse models of psoriasis. IL-17A promotes a cascade of effects, including the robust production of IL-19 in both humans and mice. IL-19, along with IL-20 and IL-24, signal via IL-20 receptors and comprise a subgroup within the IL-10 cytokine family. The role of these three cytokines in psoriasis is unresolved. They have been linked to inflammatory processes, including psoriatic pathology, but these cytokines have also been reported to suppress inflammation in other contexts. In this study, we demonstrate that signaling via IL-20 receptors, including in response to IL-19, delimited aspects of imiquimod-induced psoriatic inflammation. IL-20 receptor signaling suppressed the dermal production of the CCL2 chemokine and thereby reduced CCL-2-driven infiltration of inflammatory cells into the dermis, including IL-17A-producing γδT cells. This constitutes a negative feedback, since IL-17A strongly induces IL-19 in keratinocytes. The effects of IL-17 cytokines in this inflammatory setting are dynamic; they are central to the development of both dermal and epidermal hallmarks of psoriasis but also initiate a path to mitigate inflammatory damage.


Assuntos
Derme/patologia , Inflamação/imunologia , Interleucina-17/metabolismo , Psoríase/imunologia , Receptores de Interleucina/metabolismo , Linfócitos T/imunologia , Animais , Movimento Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Interleucina-17/genética , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/genética , Transdução de Sinais
7.
J Immunol ; 203(8): 2319-2327, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31511356

RESUMO

House dust mite (HDM) extract is a common trigger of asthma in humans. Chronic exposure to HDM also induces asthma-like pathology in mice. Allergic responses to HDM and other allergens are linked to release of IL-25, IL-33, and TSLP by epithelial cells; these cytokines, especially IL-33, target innate lymphoid cells type 2 to produce type 2 cytokines. To what extent and by what mechanisms IL-25 contributes to chronic HDM-induced pathology is not well understood. In humans, elevated levels of IL-25 appear to be associated with cases of uncontrolled asthma and exacerbated attacks. In this article, we demonstrate that blockade of IL-25 signaling in either lung conventional dendritic cells or in T cells resulted in similar decreases in production of IL-13 and IL-9 by T cells, reduced mast cell accumulation and tissue remodeling, and improved lung function but had only modest effects on eosinophilia. Stimulation of conventional dendritic cells by IL-25 promoted proximal accumulation of Th cells, and stimulation of Th cells by IL-25 locally promoted IL-13 and IL-9 production. IL-25 made notable contributions to chronic HDM-induced allergic asthma pathology by facilitating clustering and cross-stimulation of different cell types in tissue. Therapeutic targeting of IL-25 in combination with other treatments may be beneficial.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Interleucinas/imunologia , Pyroglyphidae/imunologia , Células Th2/imunologia , Animais , Asma/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
J Immunol ; 195(8): 3525-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371249

RESUMO

Asthma is a common inflammatory disease of airways that is often associated with type 2 responses triggered by allergens, such as house dust mites (HDMs). IL-25 is a key mucosal cytokine that may be produced by stressed epithelial cells; it rapidly activates type 2 innate lymphoid cells to produce IL-13 and IL-5. When administered directly into lungs, IL-25 induces acute inflammation. However, the mechanisms underlying IL-25-initiated inflammation and the roles of this cytokine in the context of HDM-induced allergic inflammation are not fully understood. We show in this article that lung-resident conventional dendritic cells were direct targets of IL-25. IL-25-stimulated dendritic cells rapidly induced mediators, such as the chemokine CCL17, which, in turn, attracted IL-9-producing T cells. Importantly, these mechanisms also operated during HDM-induced allergic lung inflammation.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Interleucina-9/imunologia , Interleucinas/farmacologia , Pulmão/imunologia , Linfócitos T/imunologia , Animais , Asma/induzido quimicamente , Asma/patologia , Quimiocina CCL17/imunologia , Células Dendríticas/patologia , Interleucinas/imunologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Linfócitos T/patologia
9.
Eur J Immunol ; 45(7): 1972-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25884683

RESUMO

The atypical IκB family member Bcl-3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, thereby either positively or negatively modulating transcription in a context-dependent manner. Previously we reported that Bcl-3 was critical for host resistance to Toxoplasma gondii. Bcl-3-deficient mice succumbed within 3-5 weeks after infection, correlating with an apparently impaired Th1-type adaptive immune response. However in which cell type(s) Bcl-3 functioned to assure resistance remained unknown. We now show that Bcl-3 expression in dendritic cells is required to generate a protective Th1-type immune response and confer resistance to T. gondii. Surprisingly, mice lacking Bcl-3 in dendritic cells were as susceptible as mice globally deficient for Bcl-3. Furthermore, early innate defenses were not compromised by the absence of Bcl-3, as initial production of IL-12 by dendritic cells and IFN-γ by NK cells were preserved. However, subsequent production of IFN-γ by CD4(+) and CD8(+) T-cells was compromised when dendritic cells lacked Bcl-3, and these mice succumbed at a time when T-cell-mediated IFN-γ production was essential for host resistance. These findings demonstrate that Bcl-3 is required in dendritic cells to prime protective T-cell-mediated immunity to T. gondii.


Assuntos
Células Dendríticas/imunologia , Imunidade Celular/imunologia , Proteínas Proto-Oncogênicas/imunologia , Toxoplasmose Animal/imunologia , Fatores de Transcrição/imunologia , Animais , Proteína 3 do Linfoma de Células B , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/imunologia , Toxoplasma
10.
Eur J Immunol ; 45(4): 1059-1068, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616060

RESUMO

Bcl-3 is an atypical member of the IκB family. Bcl-3 functions as a cofactor of p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, where it modulates NF-κB-regulated transcription in a context-dependent way. Bcl-3 has tumorigenic potential, is critical in host defense of pathogens, and has been reported to ameliorate or exacerbate inflammation, depending on disease model. However, cell-specific functions of Bcl-3 remain largely unknown. Here, we explored the role of Bcl-3 in a contact hypersensitivity (CHS) mouse model, which depends on the interplay between keratinocytes and immune cells. Bcl-3-deficient mice exhibited an exacerbated and prolonged CHS response to oxazolone. Increased inflammation correlated with higher production of chemokines CXCL2, CXCL9, and CXCL10, and consequently increased recruitment of neutrophils and CD8(+) T cells. BM chimera experiments indicated that the ability of Bcl-3 to reduce the CHS response depended on Bcl-3 activity in radioresistant cells. Specific ablation of Bcl-3 in keratinocytes resulted in increased production of CXCL9 and CXCL10 and sustained recruitment of specifically CD8(+) T cells. These findings identify Bcl-3 as a critical player during the later stage of the CHS reaction to limit inflammation via actions in radioresistant cells, including keratinocytes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dermatite Alérgica de Contato/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Tolerância a Radiação/imunologia , Fatores de Transcrição/metabolismo , Animais , Proteína 3 do Linfoma de Células B , Quimiocina CXCL10/biossíntese , Quimiocina CXCL2/biossíntese , Quimiocina CXCL9/biossíntese , Inflamação/induzido quimicamente , Mediadores da Inflamação , Queratinócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Oxazolona , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Transcrição Gênica
11.
Immunity ; 41(4): 555-66, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25367572

RESUMO

Bcl-3 is an atypical member of the IκB family that modulates transcription in the nucleus via association with p50 (NF-κB1) or p52 (NF-κB2) homodimers. Despite evidence attesting to the overall physiologic importance of Bcl-3, little is known about its cell-specific functions or mechanisms. Here we demonstrate a T-cell-intrinsic function of Bcl-3 in autoimmunity. Bcl-3-deficient T cells failed to induce disease in T cell transfer-induced colitis and experimental autoimmune encephalomyelitis. The protection against disease correlated with a decrease in Th1 cells that produced the cytokines IFN-γ and GM-CSF and an increase in Th17 cells. Although differentiation into Th1 cells was not impaired in the absence of Bcl-3, differentiated Th1 cells converted to less-pathogenic Th17-like cells, in part via mechanisms involving expression of the RORγt transcription factor. Thus, Bcl-3 constrained Th1 cell plasticity and promoted pathogenicity by blocking conversion to Th17-like cells, revealing a unique type of regulation that shapes adaptive immunity.


Assuntos
Autoimunidade/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Interferon gama/biossíntese , Proteínas Proto-Oncogênicas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Fatores de Transcrição/imunologia , Animais , Proteína 3 do Linfoma de Células B , Diferenciação Celular/imunologia , Colite/imunologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p50 de NF-kappa B/imunologia , Subunidade p52 de NF-kappa B/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas Proto-Oncogênicas/genética , Células Th1/transplante , Fatores de Transcrição/genética
12.
J Immunol ; 193(9): 4303-11, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25246497

RESUMO

Bcl-3 is an atypical member of the IκB family and modulates gene expression via interaction with p50/NF-κB1 or p52/NF-κB2 homodimers. We report in the present study that Bcl-3 is required in dendritic cells (DCs) to assure effective priming of CD4 and CD8 T cells. Lack of Bcl-3 in bone marrow-derived DCs blunted their ability to expand and promote effector functions of T cells upon Ag/adjuvant challenge in vitro and after adoptive transfers in vivo. Importantly, the critical role of Bcl-3 for priming of T cells was exposed upon Ag/adjuvant challenge of mice specifically ablated of Bcl-3 in DCs. Furthermore, Bcl-3 in endogenous DCs was necessary for contact hypersensitivity responses. Bcl-3 modestly aided maturation of DCs, but most consequentially, Bcl-3 promoted their survival, partially inhibiting expression of several antiapoptotic genes. Loss of Bcl-3 accelerated apoptosis of bone marrow-derived DCs during Ag presentation to T cells, and DC survival was markedly impaired in the context of inflammatory conditions in mice specifically lacking Bcl-3 in these cells. Conversely, selective overexpression of Bcl-3 in DCs extended their lifespan in vitro and in vivo, correlating with increased capacity to prime T cells. These results expose a previously unidentified function for Bcl-3 in DC survival and the generation of adaptive immunity.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteína 3 do Linfoma de Células B , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Sobrevivência Celular/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Expressão Gênica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Transcrição/genética
13.
J Immunol ; 191(12): 5984-92, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24244019

RESUMO

Bcl-3 is an atypical member of the family of IκB proteins. Unlike the classic members, Bcl-3 functions as a nuclear transcriptional cofactor that may, depending on context, promote or suppress genes via association with p50/NF-κB1 or p52/NF-κB2 homodimers. Bcl-3 is also an oncogene, because it is a partner in recurrent translocations in B cell tumors, resulting in deregulated expression. Bcl-3 functions, however, remain poorly understood. We have investigated the role of Bcl-3 in B cells and discovered a previously unknown involvement in the splenic development of these cells. Loss of Bcl-3 in B cells resulted in significantly more marginal zone (MZ) and fewer follicular (FO) B cells. Conversely, transgenic expression of Bcl-3 in B cells generated fewer MZ and more FO B cells. Both Bcl-3(-/-) FO and MZ B cells were more responsive to LPS stimulation compared with their wild-type counterparts, including increased proliferation. By contrast, Bcl-3(-/-) FO B cells were more prone to apoptosis upon BCR stimulation, also limiting their expansion. The data reveal Bcl-3 as a regulator of B cell fate determination, restricting the MZ path and favoring the FO pathway, at least in part, via increased signal-specific survival of the latter, a finding of relevance to its tumorigenic activity.


Assuntos
Subpopulações de Linfócitos B/citologia , Linfopoese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Baço/citologia , Fatores de Transcrição/fisiologia , Animais , Antígenos de Diferenciação de Linfócitos B/análise , Proteína 3 do Linfoma de Células B , Subpopulações de Linfócitos B/química , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linhagem da Célula , Imunidade Inata , Imunoglobulina M/imunologia , Imunofenotipagem , Integrina alfa4beta1/biossíntese , Integrina alfa4beta1/genética , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Antígeno-1 Associado à Função Linfocitária/biossíntese , Antígeno-1 Associado à Função Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Quimera por Radiação , Baço/ultraestrutura , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
14.
Immunity ; 37(6): 1104-15, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23123062

RESUMO

Systemic lupus erythematosus is a potentially fatal autoimmune disease. Although interleukin-17 (IL-17) has been linked to human lupus and mouse models of this disease, it has not been addressed whether this cytokine plays a critical role in fatal lupus pathology. Here we have demonstrated that increased production of IL-17 cytokines and their signaling via the adaptor protein CIKS (a.k.a. Traf3ip2, Act1) critically contributed to lethal pathology in an FcgammaR2b-deficient mouse model of lupus. Mice lacking IL-17 and especially those lacking CIKS showed greatly improved survival and were largely protected from development of glomerulonephritis. Importantly in this model, potential effects of IL-17 cytokines on antibody production could be distinguished from critical local contributions in kidneys, including recruitment of neutrophils and monocytes. These findings provide the proof of principle that signaling by IL-17 family cytokines mediated via CIKS presents promising therapeutic targets for the treatment of systemic lupus erythematosus, especially in cases with kidney involvement.


Assuntos
Interleucina-17/fisiologia , Nefrite Lúpica/imunologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Membrana Basal Glomerular/imunologia , Interleucina-17/genética , Rim/imunologia , Rim/metabolismo , Rim/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/mortalidade , Nefrite Lúpica/patologia , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores de IgG/deficiência , Receptores de IgG/genética , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Transdução de Sinais
15.
Hum Mol Genet ; 20(16): 3198-206, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21596842

RESUMO

Cerebral cavernous malformations (CCM) are irregularly shaped and enlarged capillaries in the brain that are prone to hemorrhage, resulting in headaches, seizures, strokes and even death in patients. The disease affects up to 0.5% of the population and the inherited form has been linked to mutations in one of three genetic loci, CCM1, CCM2 and CCM3. To understand the pathophysiology underlying the vascular lesions in CCM, it is critical to develop a reproducible mouse genetic model of this disease. Here, we report that limited conditional ablation of Ccm2 in young adult mice induces observable neurological dysfunction and reproducibly results in brain hemorrhages whose appearance is highly reminiscent of the lesions observed in human CCM patients. We first demonstrate that conventional or endothelial-specific deletion of Ccm2 leads to fatal cardiovascular defects during embryogenesis, including insufficient vascular lumen formation as well as defective arteriogenesis and heart malformation. These findings confirm and extend prior studies. We then demonstrate that the inducible deletion of Ccm2 in adult mice recapitulates the CCM-like brain lesions in humans; the lesions display disrupted vascular lumens, enlarged capillary cavities, loss of proper neuro-vascular associations and an inflammatory reaction. The CCM lesions also exhibit damaged neuronal architecture, the likely cause of neurologic defects, such as ataxia and seizure. These mice represent the first CCM2 animal model for CCM and should provide the means to elucidate disease mechanisms and evaluate therapeutic strategies for human CCM.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Deleção de Genes , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Proteínas dos Microfilamentos/metabolismo , Envelhecimento/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemorragia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neovascularização Patológica/complicações , Neovascularização Patológica/metabolismo
16.
J Immunol ; 186(4): 2412-21, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21228348

RESUMO

Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.


Assuntos
Proteínas I-kappa B/fisiologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Pneumonia Bacteriana/imunologia , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteína 3 do Linfoma de Células B , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Predisposição Genética para Doença , Proteínas I-kappa B/deficiência , Proteínas I-kappa B/genética , Infecções por Klebsiella/patologia , Infecções por Klebsiella/prevenção & controle , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Pneumonia Bacteriana/patologia , Pneumonia Bacteriana/prevenção & controle , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
17.
Arthritis Rheum ; 62(11): 3334-44, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20662069

RESUMO

OBJECTIVE: CIKS/ACT1 is an adaptor molecule that is necessary for signaling by members of the interleukin-17 cytokine family. The aim of this study was to determine whether this adaptor is required for the initiation of collagen-induced arthritis (CIA). If it is required, then CIKS-mediated signaling could be a potential target for therapeutic intervention in patients with rheumatoid arthritis (RA). METHODS: CIA model studies were performed with CIKS-deficient and CIKS-sufficient mice on an otherwise wild-type (WT) C57BL/6 background or on a C57BL/6 background lacking Fcγ receptor IIb (FcγRIIb). In addition, collagen antibody-induced arthritis (CAIA) studies were performed in WT and CIKS-deficient mice. Pathologic changes of arthritis were evaluated by visual inspection of the paws, by histochemical analysis of tissue sections, and by measurements of collagen-specific antibodies. RESULTS: Pathologic changes of CIA were readily induced in WT mice, with exacerbation of the changes in FcγRIIb-deficient mice. In contrast, CIKS-deficient mice were protected from all aspects of CIA pathology, even on an FcγRIIb-deficient background. The absence of CIKS completely prevented neutrophil infiltration into joints, bone erosion, and cartilage damage; furthermore, the production of type II collagen (CII)-specific antibodies was reduced. In contrast to the CIA model, CIKS-deficient mice in the CAIA model remained susceptible to arthritis. CONCLUSION: CIKS-mediated signaling is necessary for the pathogenesis of CIA, but not CAIA. These findings suggest critical functions of CIKS during the development of arthritis in the CIA model, including in the formation of CII antibodies, and they mark the CIKS adaptor as a potential therapeutic target in RA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite Experimental/metabolismo , Colágeno Tipo II/imunologia , Articulações/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Colágeno Tipo II/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Citometria de Fluxo , Articulações/imunologia , Articulações/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Transdução de Sinais
18.
J Immunol ; 182(6): 3406-13, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19265118

RESUMO

The NF-kappaB transcription factors have many essential functions in B cells, such as during differentiation and proliferation of Ag-challenged mature B cells, but also during final maturation of developing B cells in the spleen. Among the various specific functions NF-kappaB factors carry out in these biologic contexts, their ability to assure the survival of mature and maturing B cells in the periphery stands out. Less clear is what if any roles NF-kappaB factors play during earlier stages of B cell development in the bone marrow. Using mice deficient in both NF-kappaB1 and NF-kappaB2, which are thus partially compromised in both the classical and alternative activation pathways, we demonstrate a B cell-autonomous contribution of NF-kappaB to the survival of immature B cells in the bone marrow. NF-kappaB1 and NF-kappaB2 also play a role during the earlier transition from proB to late preB cells; however, in this context these factors do not act in a B cell-autonomous fashion. Although NF-kappaB1 and NF-kappaB2 are not absolutely required for survival and progression of immature B cells in the bone marrow, they nevertheless make a significant contribution that marks the beginning of the profound cell-autonomous control these factors exert during all subsequent stages of B cell development. Therefore, the lifelong dependency of B cells on NF-kappaB-mediated survival functions is set in motion at the time of first expression of a full BCR.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/imunologia , Subunidade p50 de NF-kappa B/fisiologia , Subunidade p52 de NF-kappa B/fisiologia , Animais , Receptor do Fator Ativador de Células B/fisiologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/patologia , Células da Medula Óssea/citologia , Células da Medula Óssea/patologia , Diferenciação Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p50 de NF-kappa B/deficiência , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/deficiência , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
J Immunol ; 182(3): 1617-30, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19155511

RESUMO

IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production, and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (also known as Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses that these two cytokines elicit. We identify CD11c(+) macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Mediadores da Inflamação/fisiologia , Interleucinas/fisiologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Antígeno CD11c/biossíntese , Células Cultivadas , Células HeLa , Humanos , Imunofenotipagem , Mediadores da Inflamação/administração & dosagem , Interleucinas/administração & dosagem , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th2/enzimologia , Células Th2/imunologia , Células Th2/metabolismo
20.
Arthritis Res Ther ; 10(4): 212, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18771589

RESUMO

Nuclear factor-kappaB (NF-kappaB) is an inducible transcription factor controlled by two principal signaling cascades, each activated by a set of signal ligands: the classical/canonical NF-kappaB activation pathway and the alternative/noncanonical pathway. The former pathway proceeds via phosphorylation and degradation of inhibitor of NF-kappaB (IkappaB) and leads most commonly to activation of the heterodimer RelA/NF-kappaB1(p50). The latter pathway proceeds via phosphorylation and proteolytic processing of NF-kappaB2 (p100) and leads to activation, most commonly, of the heterodimer RelB/NF-kappaB2 (p52). Both pathways play critical roles at multiple levels of the immune system in both health and disease, including the autoimmune inflammatory response. These roles include cell cycle progression, cell survival, adhesion, and inhibition of apoptosis. NF-kappaB is constitutively activated in many autoimmune diseases, including diabetes type 1, systemic lupus erythematosus, and rheumatoid arthritis (RA). In this review we survey recent developments in the involvement of the classical and alternative pathways of NF-kappaB activation in autoimmunity, focusing particularly on RA. We discuss the involvement of NF-kappaB in self-reactive T and B lymphocyte development, survival and proliferation, and the maintenance of chronic inflammation due to cytokines such as tumor necrosis factor-alpha, IL-1, IL-6, and IL-8. We discuss the roles played by IL-17 and T-helper-17 cells in the inflammatory process; in the activation, maturation, and proliferation of RA fibroblast-like synovial cells; and differentiation and activation of osteoclast bone-resorbing activity. The prospects of therapeutic intervention to block activation of the NF-kappaB signaling pathways in RA are also discussed.


Assuntos
Artrite Reumatoide/fisiopatologia , Autoimunidade/fisiologia , NF-kappa B/fisiologia , Transdução de Sinais/fisiologia , Citocinas/fisiologia , Humanos , Interleucina-17/fisiologia , Linfócitos T Auxiliares-Indutores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...