Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
J Phys Chem A ; 128(14): 2789-2814, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38551452

RESUMO

The OH-initiated photo-oxidation of piperidine and the photolysis of 1-nitrosopiperidine were investigated in a large atmospheric simulation chamber and in theoretical calculations based on CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The rate coefficient for the reaction of piperidine with OH radicals was determined by the relative rate method to be kOH-piperidine = (1.19 ± 0.27) × 10-10 cm3 molecule-1 s-1 at 304 ± 2 K and 1014 ± 2 hPa. Product studies show the piperidine + OH reaction to proceed via H-abstraction from both CH2 and NH groups, resulting in the formation of the corresponding imine (2,3,4,5-tetrahydropyridine) as the major product and in the nitramine (1-nitropiperidine) and nitrosamine (1-nitrosopiperidine) as minor products. Analysis of 1-nitrosopiperidine photolysis experiments under natural sunlight conditions gave the relative rates jrel = j1-nitrosoperidine/jNO2 = 0.342 ± 0.007, k3/k4a = 0.53 ± 0.05 and k2/k4a = (7.66 ± 0.18) × 10-8 that were subsequently employed in modeling the piperidine photo-oxidation experiments, from which the initial branchings between H-abstraction from the NH and CH2 groups, kN-H/ktot = 0.38 ± 0.08 and kC2-H/ktot = 0.49 ± 0.19, were derived. All photo-oxidation experiments were accompanied by particle formation that was initiated by the acid-base reaction of piperidine with nitric acid. Primary photo-oxidation products including both 1-nitrosopiperidine and 1-nitropiperidine were detected in the particles formed. Quantum chemistry calculations on the OH initiated atmospheric photo-oxidation of piperidine suggest the branching in the initial H-abstraction routes to be ∼35% N1, ∼50% C2, ∼13% C3, and ∼2% C4. The theoretical study produced an atmospheric photo-oxidation mechanism, according to which H-abstraction from the C2 position predominantly leads to 2,3,4,5-tetrahydropyridine and H-abstraction from the C3 position results in ring opening followed by a complex autoxidation, of which the first few steps are mapped in detail. H-abstraction from the C4 position is shown to result mainly in the formation of piperidin-4-one and 2,3,4,5-tetrahydropyridin-4-ol, whereas H-abstraction from N1 under atmospheric conditions primarily leads to 2,3,4,5-tetrahydropyridine and in minor amounts of 1-nitrosopiperidine and 1-nitropiperidine. The calculated rate coefficient for the piperidine + OH reaction agrees with the experimental value within 35%, and aligning the theoretical numbers to the experimental value results in k(T) = 2.46 × 10-12 × exp(486 K/T) cm3 molecule-1 s-1 (200-400 K).

2.
ACS Pharmacol Transl Sci ; 7(2): 515-532, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357284

RESUMO

Currently, there are no FDA-approved medications for the treatment of psychostimulant use disorders (PSUD). We have previously discovered "atypical" dopamine transporter (DAT) inhibitors that do not display psychostimulant-like behaviors and may be useful as medications to treat PSUD. Lead candidates (e.g., JJC8-091, 1) have shown promising in vivo profiles in rodents; however, reducing hERG (human ether-à-go-go-related gene) activity, a predictor of cardiotoxicity, has remained a challenge. Herein, a series of 30 (([1,1'-biphenyl]-2-yl)methyl)sulfinylalkyl alicyclic amines was synthesized and evaluated for DAT and serotonin transporter (SERT) binding affinities. A subset of analogues was tested for hERG activity, and the IC50 values were compared to those predicted by our hERG QSAR models, which showed robust predictive power. Multiparameter optimization scores (MPO > 3) indicated central nervous system (CNS) penetrability. Finally, comparison of affinities in human DAT and its Y156F and Y335A mutants suggested that several compounds prefer an inward facing conformation indicating an atypical DAT inhibitor profile.

3.
Bioconjug Chem ; 35(2): 223-231, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38215010

RESUMO

Membrane protein structures are essential for the molecular understanding of diverse cellular processes and drug discovery. Detergents are not only widely used to extract membrane proteins from membranes but also utilized to preserve native protein structures in aqueous solution. However, micelles formed by conventional detergents are suboptimal for membrane protein stabilization, necessitating the development of novel amphiphilic molecules with enhanced protein stabilization efficacy. In this study, we prepared two sets of tandem malonate-derived glucoside (TMG) variants, both of which were designed to increase the alkyl chain density in micelle interiors. The alkyl chain density was modulated either by reducing the spacer length (TMG-Ms) or by introducing an additional alkyl chain between the two alkyl chains of the original TMGs (TMG-Ps). When evaluated with a few membrane proteins including a G protein-coupled receptor, TMG-P10,8 was found to be substantially more efficient at extracting membrane proteins and also effective at preserving protein integrity in the long term compared to the previously described TMG-A13. This result reveals that inserting an additional alkyl chain between the two existing alkyl chains is an effective way to optimize detergent properties for membrane protein study. This new biochemical tool and the design principle described have the potential to facilitate membrane protein structure determination.


Assuntos
Detergentes , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Detergentes/química , Micelas
4.
Elife ; 122024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271216

RESUMO

The neurotransmitter:sodium symporters (NSSs) are secondary active transporters that couple the reuptake of substrate to the symport of one or two sodium ions. One bound Na+ (Na1) contributes to the substrate binding, while the other Na+ (Na2) is thought to be involved in the conformational transition of the NSS. Two NSS members, the serotonin transporter (SERT) and the Drosophila dopamine transporter (dDAT), also couple substrate uptake to the antiport of K+ by a largely undefined mechanism. We have previously shown that the bacterial NSS homologue, LeuT, also binds K+, and could therefore serve as a model protein for the exploration of K+ binding in NSS proteins. Here, we characterize the impact of K+ on substrate affinity and transport as well as on LeuT conformational equilibrium states. Both radioligand binding assays and transition metal ion FRET (tmFRET) yielded similar K+ affinities for LeuT. K+ binding was specific and saturable. LeuT reconstituted into proteoliposomes showed that intra-vesicular K+ dose-dependently increased the transport velocity of [3H]alanine, whereas extra-vesicular K+ had no apparent effect. K+ binding induced a LeuT conformation distinct from the Na+- and substrate-bound conformation. Conservative mutations of the Na1 site residues affected the binding of Na+ and K+ to different degrees. The Na1 site mutation N27Q caused a >10-fold decrease in K+ affinity but at the same time a ~3-fold increase in Na+ affinity. Together, the results suggest that K+ binding to LeuT modulates substrate transport and that the K+ affinity and selectivity for LeuT is sensitive to mutations in the Na1 site, pointing toward the Na1 site as a candidate site for facilitating the interaction with K+ in some NSSs.


Assuntos
Sódio , Simportadores , Sódio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Simportadores/metabolismo , Sítios de Ligação , Neurotransmissores
5.
Clin Oral Investig ; 28(1): 110, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265670

RESUMO

OBJECTIVES: Oral microbiome plays a crucial role in the incidence and development of oral diseases. An altered intestinal microbiome has been reported in adults with chronic kidney disease (CKD). This study aimed to characterize the tongue microbiome of young patients with CKD compared to their healthy mothers to identify the influence of CKD-associated factors on resilient tongue ecosystem. MATERIAL AND METHODS: Thirty patients with CKD (mean age, 14.2 years; 16 males and 14 females) and generalized gingivitis were included in the study. Swabs of the posterior tongue were collected from the patients and 21 mothers (mean age 40.8 years). Next-generation sequencing of 16S rDNA genes was employed to quantitatively characterize microbial communities. RESULTS: The bacterial communities were similar in terms of richness and diversity between patients and mothers (p > 0.05). In patients with CKD, 5 core phyla, 20 core genera, and 12 core species were identified. CONCLUSIONS: The tongue microbiome of the study participants showed no relevant CKD-associated differences compared to their mothers and appears to be a highly preserved niche in the oral cavity. Differences observed in the abundance of individual species in this study could be attributed to the age rather than CKD, even after a mean disease duration of 11 years. CLINICAL RELEVANCE: CKD and its associated metabolic changes appear to have no detectable impact on the resilient tongue microbiome observed in young patients.


Assuntos
Gengivite , Microbiota , Insuficiência Renal Crônica , Adulto , Feminino , Masculino , Humanos , Adolescente , Língua
7.
J Med Chem ; 67(1): 709-727, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38117239

RESUMO

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in the preclinical models of psychostimulant use disorders (PSUD). In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (JJC8-091, 3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. Improvements in DAT affinity and metabolic stability were desirable for discovering pipeline drug candidates. Thus, a series of 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines were synthesized and evaluated for binding affinities at DAT and the serotonin transporter (SERT). Replacement of the piperazine with either a homopiperazine or a piperidine ring system was well tolerated at DAT (Ki range = 3-382 nM). However, only the piperidine analogues (20a-d) showed improved metabolic stability in rat liver microsomes as compared to the previously reported analogues. Compounds 12b and 20a appeared to retain an atypical DAT inhibitor profile, based on negligible locomotor activity in mice and molecular modeling that predicts binding to an inward-facing conformation of DAT.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Ratos , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina , Aminas/farmacologia , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Piperidinas/farmacologia
8.
Chem Sci ; 14(45): 13014-13024, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023530

RESUMO

Membrane proteins play essential roles in a number of biological processes, and their structures are important in elucidating such processes at the molecular level and also for rational drug design and development. Membrane protein structure determination is notoriously challenging compared to that of soluble proteins, due largely to the inherent instability of their structures in non-lipid environments. Micelles formed by conventional detergents have been widely used for membrane protein manipulation, but they are suboptimal for long-term stability of membrane proteins, making downstream characterization difficult. Hence, there is an unmet need for the development of new amphipathic agents with enhanced efficacy for membrane protein stabilization. In this study, we designed and synthesized a set of glucoside amphiphiles with a melamine core, denoted melamine-cored glucosides (MGs). When evaluated with four membrane proteins (two transporters and two G protein-coupled receptors), MG-C11 conferred notably enhanced stability compared to the commonly used detergents, DDM and LMNG. These promising findings are mainly attributed to a unique feature of the MGs, i.e., the ability to form dynamic water-mediated hydrogen-bond networks between detergent molecules, as supported by molecular dynamics simulations. Thus, MG-C11 is the first example of a non-peptide amphiphile capable of forming intermolecular hydrogen bonds within a protein-detergent complex environment. Detergent micelles formed via a hydrogen-bond network could represent the next generation of highly effective membrane-mimetic systems useful for membrane protein structural studies.

9.
Proc Natl Acad Sci U S A ; 120(41): e2304089120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792512

RESUMO

The serotonin transporter (SERT) tightly regulates synaptic serotonin levels and has been the primary target of antidepressants. Binding of inhibitors to the allosteric site of human SERT (hSERT) impedes the dissociation of antidepressants bound at the central site and may enhance the efficacy of such antidepressants to potentially reduce their dosage and side effects. Here, we report the identification of a series of high-affinity allosteric inhibitors of hSERT in a unique scaffold, with the lead compound, Lu AF88273 (3-(1-(2-(1H-indol-3-yl)ethyl)piperidin-4-yl)-6-chloro-1H-indole), having 2.1 nM allosteric potency in inhibiting imipramine dissociation. In addition, we find that Lu AF88273 also inhibits serotonin transport in a noncompetitive manner. The binding pose of Lu AF88273 in the allosteric site of hSERT is determined with extensive molecular dynamics simulations and rigorous absolute binding free energy perturbation (FEP) calculations, which show that a part of the compound occupies a dynamically formed small cavity. The predicted binding location and pose are validated by site-directed mutagenesis and can explain much of the structure-activity relationship of these inhibitors using the relative binding FEP calculations. Together, our findings provide a promising lead compound and the structural basis for the development of allosteric drugs targeting hSERT. Further, they demonstrate that the divergent allosteric sites of neurotransmitter transporters can be selectively targeted.


Assuntos
Citalopram , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Antidepressivos/farmacologia , Citalopram/química , Citalopram/farmacologia , Inibidores Seletivos de Recaptação de Serotonina , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
10.
Int J Oral Maxillofac Surg ; 52(12): 1262-1264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544786

RESUMO

Customization in orthognathic surgery allows better precision and a reduced surgical time. In Le Fort I osteotomy surgery, the maxillary segmentation is considered one of the most unstable procedures due to transverse instability. Various different types of palatal device have been proposed to address this instability. This note describes a customized bone-borne palatal guide and splint that may help surgeons shorten the surgical time and achieve better three-dimensional repositioning, with more postoperative comfort for the patient and occlusal control for the surgeon.


Assuntos
Procedimentos Cirúrgicos Ortognáticos , Contenções , Humanos , Procedimentos Cirúrgicos Ortognáticos/métodos , Técnica de Expansão Palatina , Osteotomia Maxilar/métodos , Maxila/cirurgia , Osteotomia de Le Fort
11.
World J Hepatol ; 15(2): 225-236, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36926233

RESUMO

BACKGROUND: Cirrhosis and its complications develop in a subgroup of patients with non-alcoholic fatty liver disease (NASH). Early detection of liver fibrosis represents an important goal of clinical care. AIM: To test the hypothesis that the development of cirrhosis in nonalcoholic fatty liver disease patients is preceded by the long-term trends of platelet counts and Fib-4 scores. METHODS: We identified all patients in our healthcare system who had undergone fibrosis staging by liver biopsy or magnetic resonance elastography (MRE) for non-alcoholic fatty liver disease during the past decade (n = 310). Platelet counts, serum glutamic-pyruvic transaminase and serum glutamic oxalacetic transaminase values preceding the staging tests were extracted from the electronic medical record system, and Fib-4 scores were calculated. Potential predictors of advanced fibrosis were evaluated using multivariate regression analysis. RESULTS: Significant decreases in platelet counts and increases in Fib-4 scores were observed in all fibrosis stages, particularly in patients with cirrhosis. In the liver biopsy group, the presence of cirrhosis was best predicted by the combination of the Fib-4 score at the time closest to staging (P < 0.0001), the presence of diabetes (P = 0.0001), and the correlation coefficient of the preceding time-dependent drop in platelet count (P = 0.044). In the MRE group, Fib4 score (P = 0.0025) and platelet drop (P = 0.0373) were significant predictors. In comparison, the time-dependent rise of the Fib-4 score did not contribute in a statistically significant way. CONCLUSION: Time-dependent changes in platelet counts and Fib-4 scores contribute to the prediction of cirrhosis in NASH patients with biopsy- or MRE-staged fibrosis. Their incorporation into predictive algorithms may assist in the earlier identification of high-risk patients.

12.
Bioconjug Chem ; 34(4): 739-747, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36919927

RESUMO

High-resolution membrane protein structures are essential for a fundamental understanding of the molecular basis of diverse cellular processes and for drug discovery. Detergents are widely used to extract membrane-spanning proteins from membranes and maintain them in a functional state for downstream characterization. Due to limited long-term stability of membrane proteins encapsulated in conventional detergents, development of novel agents is required to facilitate membrane protein structural study. In the current study, we designed and synthesized tris(hydroxymethyl)aminomethane linker-bearing triazine-based triglucosides (TTGs) for solubilization and stabilization of membrane proteins. When these glucoside detergents were evaluated for four membrane proteins including two G protein-coupled receptors, a few TTGs including TTG-C10 and TTG-C11 displayed markedly enhanced behaviors toward membrane protein stability relative to two maltoside detergents [DDM (n-dodecyl-ß-d-maltoside) and LMNG (lauryl maltose neopentyl glycol)]. This is a notable feature of the TTGs as glucoside detergents tend to be inferior to maltoside detergents at stabilizing membrane proteins. The favorable behavior of the TTGs for membrane protein stability is likely due to the high hydrophobicity of the lipophilic groups, an optimal range of hydrophilic-lipophilic balance, and the absence of cis-trans isomerism.


Assuntos
Detergentes , Proteínas de Membrana , Proteínas de Membrana/química , Detergentes/química , Trometamina , Triazinas , Glucosídeos/química , Solubilidade
13.
Proc Natl Acad Sci U S A ; 120(6): e2114204120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730201

RESUMO

Psychostimulants interacting with the dopamine transporter (DAT) can be used illicitly or for the treatment of specific neuropsychiatric disorders. However, they can also produce severe and persistent adverse events. Often, their pharmacological properties in vitro do not fully correlate to their pharmacological profile in vivo. Here, we investigated the pharmacological effects of enantiomers of pyrovalerone, α-pyrrolidinovalerophenone, and 3,4-methylenedioxypyrovalerone as compared to the traditional psychostimulants cocaine and methylphenidate, using a variety of in vitro, computational, and in vivo approaches. We found that in vitro drug-binding kinetics at DAT correlate with the time-course of in vivo psychostimulant action in mice. In particular, a slow dissociation (i.e., slow koff) of S-enantiomers of pyrovalerone analogs from DAT predicts their more persistent in vivo effects when compared to cocaine and methylphenidate. Overall, our findings highlight the critical importance of drug-binding kinetics at DAT for determining the in vivo profile of effects produced by psychostimulant drugs.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Metilfenidato , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Cocaína/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Metilfenidato/farmacologia
14.
J Public Health Manag Pract ; 28(6): E825-E830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194824

RESUMO

CONTEXT: Birth cohort ("baby boomer") screening represents a well-validated strategy for the identification of asymptomatic hepatitis C-infected patients. However, successful linkage of newly diagnosed patients to antiviral therapy has been more difficult to accomplish. OBJECTIVE: To analyze the results of a systemwide birth cohort screening program in a US community health care system. DESIGN: We analyzed the data from an ongoing hepatitis C virus (HCV) screening and treatment program that was established at NorthShore University Health System in 2015. Hepatitis C virus screening by primary care providers was prompted through automated Best Practice and Health Maintenance alerts. Patient visits and screening orders were tracked using a customized HCV dashboard. Virologic, demographic, and treatment data were assessed and compared with those of a cohort of patients with previously established HCV infection. RESULTS: Since program inception, 61 8161 (64.3%) of the entire NorthShore baby boomer population of 96 001 patients have completed HCV antibody testing, and 160 patients (0.26%) were antibody positive. Of 152 antibody-positive patients who underwent HCV RNA testing, 53 (34.2%) were viremic. A total of 39 of 53 patients (73.6%) underwent antiviral therapy and achieved a sustained virologic response. Compared with patients identified through screening, a comparison cohort of patients with previously established HCV had more advanced fibrosis and significantly lower dropout rates. The COVID-19 pandemic was associated with a decrease in the number of outpatient visits of screening-eligible patients and with a reduction in HCV screening rates. CONCLUSION: Our data demonstrate the electronic medical records-assisted systemwide implementation of HCV birth cohort screening and successful linkage to antiviral therapy in a community-based US multihospital system.


Assuntos
COVID-19 , Hepatite C , Antivirais/uso terapêutico , Coorte de Nascimento , Planejamento em Saúde Comunitária , Hepacivirus , Hepatite C/diagnóstico , Hepatite C/tratamento farmacológico , Hepatite C/epidemiologia , Humanos , Programas de Rastreamento/métodos , Pandemias , RNA
15.
Chem Asian J ; 17(24): e202200941, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36253323

RESUMO

Detergents have been major contributors to membrane-protein structural study for decades. However, membrane proteins solubilized in conventional detergents tend to aggregate or denature over time. Stability of large eukaryotic membrane proteins with complex structures tends to be particularly poor, necessitating development of novel detergents with improved properties. Here, we prepared a novel class of detergents, designated 3,4-bis(hydroxymethyl)hexane-1,6-diol-based maltosides (HDMs). When tested on three membrane proteins, including two G-protein-coupled receptors (GPCRs), the new detergents displayed significantly better behaviors compared with DDM. Moreover, the HDMs were superior or comparable to LMNG, an amphiphile widely used for GPCR structural study. An optimal balance of detergent rigidity vs. flexibility of the HDMs is likely responsible for their favorable behaviors toward membrane-protein stability. Thus, the current study not only introduces the HDMs, with significant potential for membrane-protein structural study, but also suggests a useful guideline for designing novel detergents for membrane-protein research.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Proteínas de Membrana/química , Hexanos , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica
16.
Case Rep Gastroenterol ; 16(2): 435-440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35949232

RESUMO

Pill-induced esophagitis due to calcium supplements is extremely uncommon. We present a 60-year-old female patient with pill-induced esophageal perforation complicated by mediastinal abscess and esophago-pleural fistula following ingestion of a single over-the-counter "bone supplement" tablet containing mainly calcium.

17.
Chem Sci ; 13(19): 5750-5759, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694361

RESUMO

Detergents are extensively used for membrane protein manipulation. Membrane proteins solubilized in conventional detergents are prone to denaturation and aggregation, rendering downstream characterization of these bio-macromolecules difficult. Although many amphiphiles have been developed to overcome the limited efficacy of conventional detergents for protein stabilization, only a handful of novel detergents have so far proved useful for membrane protein structural studies. Here, we introduce 1,3-acetonedicarboxylate-derived amphiphiles (ACAs) containing three glucose units and two alkyl chains as head and tail groups, respectively. The ACAs incorporate two different patterns of alkyl chain attachment to the core detergent unit, generating two sets of amphiphiles: ACA-As (asymmetrically alkylated) and ACA-Ss (symmetrically alkylated). The difference in the attachment pattern of the detergent alkyl chains resulted in minor variation in detergent properties such as micelle size, critical micelle concentration, and detergent behaviors toward membrane protein extraction and stabilization. In contrast, the impact of the detergent alkyl chain length on protein stability was marked. The two C11 variants (ACA-AC11 and ACA-SC11) were most effective at stabilizing the tested membrane proteins. The current study not only introduces new glucosides as tools for membrane protein study, but also provides detergent structure-property relationships important for future design of novel amphiphiles.

18.
Plant J ; 111(4): 936-953, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696314

RESUMO

In a cross-continental research initiative, including researchers working in Australia and Denmark, and based on joint external funding by a 3-year grant from the Novo Nordisk Foundation, we have used DNA sequencing, extensive chemical profiling and molecular networking analyses across the entire Eremophila genus to provide new knowledge on the presence of natural products and their bioactivities using polypharmocological screens. Sesquiterpenoids, diterpenoids and dimers of branched-chain fatty acids with previously unknown chemical structures were identified. The collection of plant material from the Eremophila genus was carried out according to a 'bioprospecting agreement' with the Government of Western Australia. We recognize that several Eremophila species hold immense cultural significance to Australia's First Peoples. In spite of our best intentions to ensure that new knowledge gained about the genus Eremophila and any potential future benefits are shared in an equitable manner, in accordance with the Nagoya Protocol, we encounter serious dilemmas and potential conflicts in making benefit sharing with Australia's First Peoples a reality.


Assuntos
Diterpenos , Scrophulariaceae , Austrália
19.
J Phys Chem A ; 126(20): 3247-3264, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544412

RESUMO

The OH-initiated photo-oxidation of N-methylmethanimine, CH3N═CH2, was investigated in the 200 m3 EUPHORE atmospheric simulation chamber and in a 240 L stainless steel photochemical reactor employing time-resolved online FTIR and high-resolution PTR-ToF-MS instrumentation and in theoretical calculations based on quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations forecast the OH reaction to primarily proceed via H-abstraction from the ═CH2 group and π-system C-addition, whereas H-abstraction from the -CH3 group is a minor route and forecast that N-addition can be disregarded under atmospheric conditions. Theoretical studies of CH3N═CH2 photolysis and the CH3N═CH2 + O3 reaction show that these removal processes are too slow to be important in the troposphere. A detailed mechanism for OH-initiated atmospheric degradation of CH3N═CH2 was obtained as part of the theoretical study. The photo-oxidation experiments, obstructed in part by the CH3N═CH2 monomer-trimer equilibrium, surface reactions, and particle formation, find CH2═NCHO and CH3N═CHOH/CH2═NCH2OH as the major primary products in a ratio 18:82 ± 3 (3σ-limit). Alignment of the theoretical results to the experimental product distribution results in a rate coefficient, showing a minor pressure dependency under tropospheric conditions and that can be parametrized k(T) = 5.70 × 10-14 × (T/298 K)3.18 × exp(1245 K/T) cm3 molecule-1 s-1 with k298 = 3.7 × 10-12 cm3 molecule-1 s-1. The atmospheric fate of CH3N═CH2 is discussed, and it is concluded that, on a global scale, hydrolysis in the atmospheric aqueous phase to give CH3NH2 + CH2O will constitute a dominant loss process. N2O will not be formed in the atmospheric gas phase degradation, and there are no indications of nitrosamines and nitramines formed as primary products.

20.
Nat Commun ; 13(1): 2446, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508541

RESUMO

The dopamine transporter facilitates dopamine reuptake from the extracellular space to terminate neurotransmission. The transporter belongs to the neurotransmitter:sodium symporter family, which includes transporters for serotonin, norepinephrine, and GABA that utilize the Na+ gradient to drive the uptake of substrate. Decades ago, it was shown that the serotonin transporter also antiports K+, but investigations of K+-coupled transport in other neurotransmitter:sodium symporters have been inconclusive. Here, we show that ligand binding to the Drosophila- and human dopamine transporters are inhibited by K+, and the conformational dynamics of the Drosophila dopamine transporter in K+ are divergent from the apo- and Na+-states. Furthermore, we find that K+ increases dopamine uptake by the Drosophila dopamine transporter in liposomes, and visualize Na+ and K+ fluxes in single proteoliposomes using fluorescent ion indicators. Our results expand on the fundamentals of dopamine transport and prompt a reevaluation of the impact of K+ on other transporters in this pharmacologically important family.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Simportadores , Animais , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila/metabolismo , Transporte de Íons , Íons/metabolismo , Neurotransmissores/metabolismo , Potássio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sódio/metabolismo , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...