Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11579, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464008

RESUMO

The ionosphere, Earth's space environment, exhibits widespread turbulent structuring, or plasma irregularities, visualized by the auroral displays seen in Earth's polar regions. Such plasma irregularities have been studied for decades, but plasma turbulence remains an elusive phenomenon. We combine scale-dependent measurements from a ground-based radar with satellite observations to characterize small-scale irregularities simultaneously in the bottomside and topside ionosphere and perform a statistical analysis on an aggregate from both instruments over time. We demonstrate the clear mapping of information vertically along the ionospheric altitude column, for field-perpendicular wavelengths down to 1.5 km. Our results paint a picture of the northern hemisphere high-latitude ionosphere as a turbulent system that is in a constant state of growth and decay; energy is being constantly injected and dissipated as the system is continuously attempting an accelerated return to equilibrium. We connect the widespread irregularity dissipation to Pedersen conductance in the E-region, and discuss the similarities between irregularities found in the polar cap and in the auroral region in that context. We find that the effects of a conducting E-region on certain turbulent properties (small-scale spectral index) is near ubiquitous in the dataset, and so we suggest that the electrodynamics of a conducting E-region must be considered when discussing plasma turbulence at high latitudes. This intimate relationship opens up the possibility that E-region conductivity is associated with the generation of F-region irregularities, though further studies are needed to assess that possibility.

2.
J Geophys Res Space Phys ; 128(2): e2022JA030835, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37035843

RESUMO

Current inference techniques for processing multi-needle Langmuir probe (m-NLP) data are often based on adaptations of the Orbital Motion-Limited (OML) theory which relies on several simplifying assumptions. Some of these assumptions, however, are typically not well satisfied in actual experimental conditions, thus leading to uncontrolled uncertainties in inferred plasma parameters. In order to remedy this difficulty, three-dimensional kinetic particle in cell simulations are used to construct a synthetic data set, which is used to compare and assess different m-NLP inference techniques. Using a synthetic data set, regression-based models capable of inferring electron density and satellite potentials from 4-tuples of currents collected with fixed-bias needle probes similar to those on the NorSat-1 satellite, are trained and validated. The regression techniques presented show promising results for plasma density inferences with RMS relative errors less than 20%, and satellite potential inferences with RMS errors less than 0.2 V for potentials ranging from -6 to -1 V. The new inference approaches presented are applied to NorSat-1 data, and compared with existing state-of-the-art inference techniques.

3.
Geophys Res Lett ; 49(12): e2021GL097013, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35865911

RESUMO

We investigate the nature of small-scale irregularities observed in the cusp by the Twin Rockets to Investigate Cusp Electrodynamics-2 (TRICE-2) in regions of enhanced phase scintillations and high-frequency coherent radar backscatter. We take advantage of the fact that the irregularities were detected by spatially separated probes, and present an interferometric analysis of both the observed electron density and electric field fluctuations. We provide evidence that fluctuations spanning a few decameters to about a meter have low phase velocity in the plasma reference frame and are nondispersive, confirming that decameter-scale irregularities follow the E × B velocity. Furthermore, we show that these "spatial" structures are intermittent and prominent outside of regions with strongest precipitation. The observations are then discussed in the context of possible mechanisms for irregularity creation.

4.
J Geophys Res Space Phys ; 127(4): e2021JA030183, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35866071

RESUMO

Ionospheric plasma irregularities can be successfully studied with the Swarm satellites. Parameters derived from the in-situ plasma measurements and from the topside ionosphere total electron content provide a comprehensive dataset for characterizing plasma structuring along the orbits of the Swarm satellites. The Ionospheric Plasma IRregularities (IPIR) data product summarizes these parameters and allows for systematic studies of ionospheric irregularities. IPIR has already been used in investigations of structuring and variability of ionospheric plasma. This report provides a detailed description of algorithms behind the IPIR data product and demonstrates its use for ionospheric studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA