Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(11): 8244-5, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26911522

RESUMO

Correction for 'Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study' by Edgar Leon-Gutierrez et al., Phys. Chem. Chem. Phys., 2010, 12, 14693-14698.

2.
J Phys Chem B ; 118(36): 10795-801, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25105838

RESUMO

Ultrastable thin film glasses transform into supercooled liquid via propagating fronts starting from the surface and/or interfaces. In this paper, we analyze the consequences of this mechanism in the interpretation of specific heat curves of ultrastable glasses of indomethacin for samples with varying thickness from 20 nm up to several microns. We demonstrate that ultrastable films above 20 nm have identical fictive temperatures and that the apparent change of onset temperature in the specific heat curves originates from the mechanism of transformation and the normalization procedure. An ad hoc surface normalization of the heat capacity yields curves which collapse into a single one irrespective of their thickness. Furthermore, we fit the surface-normalized specific heat curves with a heterogeneous transformation model to evaluate the velocity of the growth front over a much wider temperature interval than previously reported. Our data expands previous values up to Tg + 75 K, covering 12 orders of magnitude in relaxation times. The results are consistent with preceding experimental and theoretical studies. Interestingly, the mobility of the supercooled liquid in the region behind the transformation front remains constant throughout the thickness of the layers.

3.
Phys Chem Chem Phys ; 12(44): 14693-8, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20944849

RESUMO

Vapor deposited thin films (~100 nm thickness) of toluene and ethylbenzene grown by physical vapor deposition show enhanced stability with respect to samples slowly cooled from the liquid at a rate of 5 K min(-1). The heat capacity is measured in situ immediately after growth from the vapor or after re-freezing from the supercooled liquid at various heating rates using quasi-adiabatic nanocalorimetry. Glasses obtained from the vapor have low enthalpies and large heat capacity overshoots that are shifted to high temperatures. The stability is maximized at growth temperatures in the vicinity of 0.8 T(g) for both molecules, although glasses of ethylbenzene show superior stabilization. Our data is consistent with previous results of larger organic molecules suggesting a generalized behavior on the stability of organic glasses grown from the vapor. In addition, we find that for the small molecules analyzed here, slowing the growth rate below 0.1 nm s(-1) does not result in increased thermodynamic stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...