Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687392

RESUMO

Monoterpenes are volatile organic compounds that play important roles in atmospheric chemistry, plant physiology, communication, and defense. This review compiles the monoterpene emission flux data reported for different regions and plant species and highlights the role of abiotic environmental factors in controlling the emissions of biogenic monoterpenes and their emission fluxes for terrestrial plant species (including seasonal variations). Previous studies have demonstrated the role and importance of ambient air temperature and light in controlling monoterpene emissions, likely contributing to higher monoterpene emissions during the summer season in temperate regions. In addition to light and temperature dependence, other important environmental variables such as carbon dioxide (CO2), ozone (O3), soil moisture, and nutrient availability are also known to influence monoterpene emissions rates, but the information available is still limited. Throughout the paper, we identify knowledge gaps and provide recommendations for future studies.

2.
Trop Ecol ; 64(1): 1-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35531346

RESUMO

It is indisputable that invasive plant species strongly impact the ecosystems they invade. Many of such impacts can be negative and threaten the local species through competition, environmental change, or habitat loss. However, introduced plants may also have positive roles in the ecosystems they invade. This review extracted information from reports on common gorse (Ulex europaeus), one of the top 100 invasive plants on the earth, including its detrimental effects and potential beneficial roles in invaded ecosystems. The reduction of native fauna and flora are the main harmful effects of common gorse identified by the literature review. Soil impoverishment and fire hazards are other negative impacts reported for common gorse that could affect agricultural systems and local economies. Despite the negative impacts, reports of positive ecological services provided by common gorse also exist, e.g., as a nursery plant or habitat for endangered native animals. We also reviewed the known human uses of this plant that could support management strategies through harvest and benefit the local communities, including its use as biofuel, raw matter for xylan extraction, medicine, and food. Finally, our review identified the gaps in the literature regarding the understanding of the beneficial role of common gorse on native ecosystems and potential human uses, especially in the tropics.

3.
Sci Rep ; 12(1): 15450, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104363

RESUMO

In invasion scenarios, native and introduced species co-occur creating new interactions and modifying existing ones. Many plant-plant and plant-insect interactions are mediated by volatile organic compounds (VOCs), however, these have seldom been studied in an invasion context. To fill this knowledge gap, we explored some interactions mediated by VOCs between native and introduced plants and insects in a New Zealand system. We investigated whether a native plant, Leptospermum scoparium (manuka), changes its volatile profile when grown adjacent to two European introduced plants, Calluna vulgaris (heather) and Cytisus scoparius (Scotch broom), in a semi-field trial using potted plants without above- or below-ground physical contact. We also investigated the influence of plant cues on the host-searching behaviour of two beetles, the native Pyronota festiva (manuka beetle), and the introduced biocontrol agent Lochmaea suturalis (heather beetle), by offering them their host-plant and non-host volatiles versus clean air, and their combination in a Y-tube olfactometer. As a follow-up, we performed preference/feeding tests in Petri dishes with fresh plant material. Results of the semi-field experiment show a significant reduction in green leaf volatiles, sesquiterpenes and total volatile emissions by manuka plants neighbouring heather. In the Y-tube assays, the native beetle P. festiva performed poorly in discriminating between host and non-host plants based on plant volatile cues only. However, it performed relatively well in the Petri dish tests, where other cues (i.e., visual, gustatory or tactile) were present. In contrast, the introduced beetle L. suturalis showed high host-specificity in both Y-tube and Petri dish assays. This study illustrates the importance of VOCs in mediating interactions between introduced and native species, suggesting that invasive plants can disrupt native plants' communication and affect the host-searching behaviour of native insects. It also reinforces the relevance of regular host testing on introduced weed biocontrol agents to avoid unwanted host shifts or host-range expansion.


Assuntos
Besouros , Cytisus , Compostos Orgânicos Voláteis , Animais , Espécies Introduzidas , Plantas
4.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630758

RESUMO

Honey production and export are significant contributors to the Aotearoa New Zealand economy, generating over 400 million dollars in revenue. Its main export is manuka (Leptospermum scoparium) honey, which has a high commercial value due to its medicinal properties that are linked to its unique chemical composition. The compound methylglyoxal (MGO) has been identified as the main floral marker and is used as a quality indicator, often labelled as unique manuka factor (UMF). However, the high demand for manuka honey creates pressure on beekeepers and may have negative ecological consequences by favouring extensive manuka monocultures to the detriment of other native species. There are other honeys native to New Zealand, such as kamahi (Weinmannia racemosa), kanuka (Kunzea ericoides), rata (Metrosideros robusta) and rewarewa (Knightia excelsa), that also have medicinal properties; however, they are less well known in the local and global market. Indigenous Maori communities envision the production and commercialization (locally and internationally) of these honeys as an opportunity to generate income and secure a sustainable future in alignment with their worldview (Te Ao Maori) and values (tikanga Maori). Diversifying the market could lead to a more sustainable income for beekeepers and reduce pressure on Maori and the conservation land, while supporting indigenous communities to realize their vision and aspirations. This manuscript provides an extensive review of the scientific literature, technical literature and traditional knowledge databases describing the plants of interest and their traditional medicinal uses (rongoa) and the chemical properties of each honey, potential floral markers and their biological activity. For each honey type, we also identify knowledge gaps and potential research avenues. This information will assist Maori beekeepers, researchers, consumers and other stakeholders in making informed decisions regarding future research and the production, marketing and consumption of these native monofloral honeys.


Assuntos
Mel , Kunzea , Humanos , Leptospermum/química , Havaiano Nativo ou Outro Ilhéu do Pacífico , Nova Zelândia
5.
J Chem Ecol ; 48(2): 121-140, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35001201

RESUMO

Chemoreception plays a crucial role in the reproduction and survival of insects, which often rely on their sense of smell and taste to find partners, suitable habitats, and food sources, and to avoid predators and noxious substances. There is a substantial body of work investigating the chemoreception and chemical ecology of Diptera (flies) and Lepidoptera (moths and butterflies); but less is known about the Orthoptera (grasshoppers, locusts, crickets, and weta). Within the Orthoptera, the family Acrididae contains about 6700 species of short-horned grasshoppers. Grasshoppers are fascinating organisms to study due to their significant taxonomic and ecological divergence, however, most chemoreception and chemical ecology studies have focused on locusts because they are agricultural pests (e.g., Schistocerca gregaria and Locusta migratoria). Here we review studies of chemosensory systems and chemical ecology of all short-horned grasshoppers. Applications of genome editing tools and entomopathogenic microorganism to control locusts in association with their chemical ecology are also discussed. Finally, we identify gaps in the current knowledge and suggest topics of interest for future studies.


Assuntos
Borboletas , Gafanhotos , Animais , Ecossistema , Olfato
6.
Front Plant Sci ; 12: 734531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721463

RESUMO

Volatile organic compounds (VOCs) produced by plants are essential indicators of their physiological response to environmental conditions. But evidence of natural variation in VOC emissions and their contributing factors is still limited, especially for non-cultivated species. Here we explored the natural volatile emissions of Dracophyllum subulatum Hook.f., an endemic shrub to the North Island Central Plateau of New Zealand, and determined some environmental factors driving the plant's emissions. Volatile emissions of D. subulatum were measured on four separate occasions from December 2017 to September 2018 using the "push-pull" headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). D. subulatum was classified based on the volatiles measured on each sampling occasion using linear discriminant analysis (LDA). On each sampling occasion, we also recorded and compared ambient air temperature, herbivory damage, total soil nitrogen (N), available phosphorus (P), potassium (K), and soil moisture content. The relationship between environmental variables that differed significantly between sampling occasions and volatile emissions were estimated using generalized linear models (GLMs). Based on VOCs measured on each sampling occasion, we were able to distinguish different chemical profiles. Overall, we found that total emission and the relative proportions of all major chemical classes released by D. subulatum were significantly higher during summer. The GLMs reveal that differences in environmental factors between the four sampling occasions are highly associated with changing emissions. Higher temperatures in summer had a consistently strong positive relationship with emissions, while the impacts of soil moisture content, P and K were variable and depended on the chemical class. These results are discussed, particularly how high temperature (warming) may shape volatile emissions and plants' ecology.

7.
Sci Rep ; 10(1): 11736, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678113

RESUMO

The New Zealand tea tree Leptospermun scoparium (manuka) is widely known for the antimicrobial properties of its honey. Manuka is native to New Zealand, growing in a range of environments, including the Central Volcanic Plateau of the North Island, where it is currently threatened by the spread of exotic invasive weeds such as heather (Calluna vulgaris) and Scotch broom (Cytisus scoparius). Here, we characterise for the first time the aboveground volatile organic compounds (VOCs) produced by manuka in this area, during summer and winter seasons, in weed-invaded and non-invaded stands. We measured plant volatiles at four sites, each with a distinct combination of woody species: (1) conspecific stands of manuka; (2) manuka and another native species (Dracophyllum subulatum); and manuka with one of two European invasive plants, (3) heather or (4) Scotch broom. We also quantified herbivore damage on target manuka plants and analysed microclimatic variables (soil nutrients, air temperature and soil water content) to investigate their impact on volatile emissions. Our results reveal a strong seasonal effect on volatile emissions, but also significant differences between sites associated with biotic and abiotic changes partly driven by invasive plants. Overall, volatile emission rates from manuka were typically lower at sites where invaders were present. We point to several factors that could contribute to the observed emission patterns and areas of interest for future research to provide a comprehensive understanding of VOC emissions in nature. Given the vital role of volatile compounds in plant communication, we also recommend future studies to be performed in multiple seasons, with larger sample sizes and more study sites to expand on these findings and explore the ecological impacts of changes in VOC emissions during plant invasion.


Assuntos
Meio Ambiente , Leptospermum/química , Plantas Daninhas , Estações do Ano , Compostos Orgânicos Voláteis , Análise de Variância , Herbivoria , Nova Zelândia
8.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668802

RESUMO

Calluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of "adjustment" involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018-2019, reflecting variations in beetle's abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-ß-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.


Assuntos
Calluna/metabolismo , Calluna/efeitos da radiação , Herbivoria , Plantas Daninhas/metabolismo , Plantas Daninhas/efeitos da radiação , Compostos Orgânicos Voláteis/metabolismo , Animais , Agentes de Controle Biológico , Besouros , Nova Zelândia , Estresse Fisiológico , Raios Ultravioleta
9.
Plants (Basel) ; 9(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698536

RESUMO

Heather (Calluna vulgaris) and broom (Cytisus scoparius), originally from Europe, are the main invasive plants on New Zealand's North Island Central Plateau, where they threaten native flora and fauna. Given the strong link between arthropod communities and plants, we explored the impact of these invasive weeds on the diversity and composition of associated arthropod assemblages in this area. The arthropods in heather-invaded areas, broom-invaded areas, and areas dominated by the native species manuka (Leptospermum scoparium) and Dracohyllum (Dracophyllum subulatum) were collected and identified to order. During summer and autumn, arthropods were collected using beating trays, flight intercept traps and pitfall traps. Diversity indices (Richness, Shannon's index and Simpson's index) were calculated at the order level, and permutational multivariate analysis (PERMANOVA) was used to explore differences in order-level community composition. Our results show a significant variation in community composition for all trapping methods in both seasons, whereas invasive plants did not profoundly impact arthropod order richness. The presence of broom increased arthropod abundance, while heather was linked to a reduction. Under all possible plant pairings between heather, broom, manuka, and Dracophylum, the impact of neighbouring plant identity on arthropod community composition was further explored for the samples collected using beating trays. The results suggest that during plant invasion, arthropod communities are affected by neighbouring plant identity and that impacts vary between arthropod sampling methods and seasons.

10.
Insects ; 11(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707954

RESUMO

Infestation of willow plants by the giant willow aphid Tuberolachnus salignus (Hemiptera: Aphididae) is associated with copious deposition of sugar-rich honeydew under the plant canopy. We explored the effect of aphid honeydew on the soil biota and biochemical indicators in a two-year field trial. Soil samples from under aphid-infested and control willow trees, as well as samples from black sooty mould spots under the aphid-infested willows were compared; soil samples before aphid inoculation were used as a baseline. The honeydew deposition had a positive effect on the total soil carbon (C), but not on the total soil nitrogen content or soil pH. Microbial biomass C, basal respiration, number of yeast colony forming units, and the geometric mean of activities for six enzymes were significantly higher in honeydew-affected soils than in the control treatment on both years. The honeydew deposition also increased soil meso-fauna abundance, especially in the black sooty mould spots. The soil biochemical properties, which differed before and after aphid infestation, showed considerable overlap between the first and second year post-infestation. The results highlight the cascading effects of T. salignus on soil biological activity and the importance of using a multitrophic approach to explore similar scenarios.

11.
Plants (Basel) ; 9(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098163

RESUMO

Invasive plants pose a threat to natural ecosystems, changing the community composition and ecological dynamics. One aspect that has received little attention is the production and emission of volatile organic compounds (VOCs) by invasive plants. Investigating VOCs is important because they are involved in vital ecological interactions such as pollination, herbivory and plant competition. Heather, Calluna vulgaris, is a major invasive weed in New Zealand, especially on the Central Plateau, where it has spread rapidly since its introduction in 1912, outcompeting native species. However, the chemical behaviour of heather in its invaded ranges is poorly understood. We aimed to explore the natural variation in volatile emissions of heather and the biotic and abiotic factors influencing them on the Central Plateau of New Zealand. To this end, foliar volatiles produced by heather at four different sites were collected and analysed using gas chromatography coupled to mass spectrometry. Soil properties, herbivory and other environmental data were also collected at each site to investigate their effects on VOC emissions using generalised linear models (GLMs). Our results reveal significant differences in VOC emissions between sites and suggest that soil nutrients are the main factor accounting for these differences. Herbivory and temperature had only a minor effect, while soil water content had no impact. Further studies are needed to investigate how these variations in the invasive plant's foliar volatiles influence native species.

12.
Insects ; 10(7)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295894

RESUMO

The New Zealand stick insect Clitarchus hookeri has both sexual and parthenogenetic (all-female) populations. Sexual populations exhibit a scramble competition mating system with distinctive sex roles, where females are signalers and males are searchers, which may lead to differences in the chemical and morphological traits between sexes. Evidence from a range of insect species has shown a decay of sexual traits is common in parthenogenetic lineages, especially those traits related to mate attraction and location, presumably due to their high cost. However, in some cases, sexual traits remain functional, either due to the recent evolution of the parthenogenetic lineage, low cost of maintenance, or because there might be an advantage in maintaining them. We measured morphological and chemical traits of C. hookeri to identify differences between males and females and between females from sexual and parthenogenetic populations. We also tested the ability of males to discriminate between sexual and parthenogenetic females in a laboratory bioassay. Our results show that male C. hookeri has morphological traits that facilitate mobility (smaller body with disproportionately longer legs) and mate detection (disproportionately longer antennae), and adult females release significantly higher amounts of volatile organic compounds than males when this species is sexually active, in accordance with their distinctive sex roles. Although some differences were detected between sexual and parthenogenetic females, the latter appear to maintain copulatory behaviors and chemical signaling. Males were unable to distinguish between sexual and parthenogenetic females, suggesting that there has been little decay in the sexual traits in the parthenogenetic lineage of C. hookeri.

13.
Sci Rep ; 9(1): 8953, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222054

RESUMO

Almost all previous work on host-plant selection by insect herbivores has focused on adult behaviour; however, immature life stages can also play an active role in host discrimination. The important forest pest Lymantria dispar (gypsy moth) has three recognised subspecies: the European, Asian, and Japanese gypsy moth. Unlike the other two subspecies, the European subspecies is characterised by a loss of female flight ability, which might impose a selective pressure on larvae to actively engage in host-plant selection. We therefore explored the interactions of early-instar larvae from laboratory colonies of each subspecies with four potential hosts of differing quality: oak, beech, maple, and pine-measuring larval survival and performance, feeding preferences, responses to host-derived odour cues, and the propensity to disperse from hosts via ballooning. Compared to larvae from the Asian and Japanese subspecies, larvae from the (American-originated) European gypsy moth colony exhibited (i) significantly lower survival on the poorest quality host (pine), (ii) an ability to discriminate among hosts via olfactory cues; and (iii) higher propensity to disperse from sub-optimal hosts. These results are consistent with the hypothesis that larvae from flightless female European Gypsy moth subspecies play a more active role in host-plant selection.


Assuntos
Comportamento Alimentar , Larva/fisiologia , Mariposas/fisiologia , Árvores/parasitologia , Animais , Feminino , Mariposas/classificação , Mariposas/crescimento & desenvolvimento , Especificidade da Espécie
14.
Ecol Evol ; 6(23): 8569-8582, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28031808

RESUMO

The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

15.
Plant J ; 80(6): 1095-107, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25335755

RESUMO

Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores.


Assuntos
Regulação da Expressão Gênica de Plantas , Mariposas/efeitos dos fármacos , Nitrilas/metabolismo , Oximas/metabolismo , Populus/enzimologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Herbivoria , Larva , Mariposas/fisiologia , Oximas/química , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/imunologia , Análise de Sequência de DNA , Compostos Orgânicos Voláteis/metabolismo
16.
Plant Cell Environ ; 37(8): 1836-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24749758

RESUMO

Plants emit complex mixtures of volatile organic compounds from floral and vegetative tissue, especially after herbivore damage, so it is difficult to associate individual compounds with activity towards pollinators, herbivores or herbivore enemies. Attention has usually focused upon the biological activity of the most abundant compounds; but here, we detail a number of reports implicating minor volatiles in attractant or deterrent roles. This is not surprising given the exquisite sensitivity of insect olfactory systems for certain substances. In this context, it is worth reconsidering the methods involved in sampling volatile compounds from plants, measuring their abundance and determining their biological activity to ensure that minor compounds are not overlooked. Here, we describe various experimental approaches and chemical and statistical methods that should increase the chance of detecting minor compounds with major biological activities.


Assuntos
Insetos/fisiologia , Plantas/química , Compostos Orgânicos Voláteis/química , Animais , Herbivoria , Polinização
17.
Plant Cell Environ ; 37(8): 1909-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24471487

RESUMO

After herbivory, plants release volatile organic compounds from damaged foliage as well as from nearby undamaged leaves that attract herbivore enemies. Little is known about what controls the volatile emission differences between damaged and undamaged tissues and how these affect the orientation of herbivore enemies. We investigated volatile emission from damaged and adjacent undamaged foliage of black poplar (Populus nigra) after herbivory by gypsy moth (Lymantria dispar) caterpillars and determined the compounds mediating the attraction of the gypsy moth parasitoid Glyptapanteles liparidis (Braconidae). Female parasitoids were more attracted to gypsy moth-damaged leaves than to adjacent non-damaged leaves. The most characteristic volatiles of damaged versus neighbouring undamaged leaves included terpenes, green leaf volatiles and nitrogen-containing compounds, such as aldoximes and nitriles. Electrophysiological recordings and olfactometer bioassays demonstrated the importance of nitrogenous volatiles. Under field conditions, parasitic Hymenoptera were more attracted to traps baited with these substances than most other compounds. The differences in volatile emission profiles between damaged and undamaged foliage appear to be regulated by jasmonate signalling and the local activation of volatile biosynthesis. We conclude that characteristic volatiles from damaged black poplar foliage are essential cues enabling parasitoids to find their hosts.


Assuntos
Herbivoria , Mariposas/fisiologia , Populus/química , Compostos Orgânicos Voláteis/química , Vespas/fisiologia , Animais , Feminino , Genes de Plantas , Genótipo , Larva , Mariposas/parasitologia , Feromônios/química , Folhas de Planta/química , Folhas de Planta/fisiologia , Populus/genética , Populus/fisiologia , Terpenos/química
18.
Trends Plant Sci ; 17(5): 303-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22503606

RESUMO

Plants respond to herbivore attack by emitting complex mixtures of volatile compounds that attract herbivore enemies, both predators and parasitoids. Here, we explore whether these mixtures provide significant value as information cues in herbivore enemy attraction. Our survey indicates that blends of volatiles released from damaged plants are frequently specific depending on the type of herbivore and its age, abundance and feeding guild. The sensory perception of plant volatiles by herbivore enemies is also specific, according to the latest evidence from studies of insect olfaction. Thus, enemies do exploit the detailed information provided by plant volatile mixtures in searching for their prey or hosts, but this varies with the diet breadth of the enemy.


Assuntos
Herbivoria/fisiologia , Interações Hospedeiro-Parasita , Plantas/metabolismo , Plantas/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Ecossistema , Comportamento Alimentar/fisiologia , Herbivoria/classificação , Insetos/classificação , Insetos/fisiologia , Plantas/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...