Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 50(3): 567-579, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33826141

RESUMO

Although salinity and sodicity are worldwide problems, information on greenhouse gas (GHG) emissions from agricultural salt-affected soils is scarce. The CO2 -C and N2 O-N emissions were quantified from three zones intertwined within a single U.S. northern Great Plains field: a highly productive zone (electrical conductivity with 1:1 soil/water mass ratio [EC1:1 ] = 0.4 dS m-1 ; sodium adsorption ratio [SAR] = 1.8), a transition zone (moderately salt-affected; EC1:1  = 1.6 dS m-1 ; SAR = 4.99), and a saline/sodic zone (EC1:1  = 3.9 dS m-1 ; SAR = 22). In each zone, emissions were measured every 4 h for 7 d in four randomly placed chambers that were treated with two N rates (0 and 224 kg N ha-1 ). The experiment was conducted in 2018 and 2019 during similar seasonal periods. Soil samples taken from treatments after GHG measurement were analyzed for soil inorganic N, and microbial biomass from different communities was quantified using phospholipid fatty acid analysis. Real-time polymerase chain reaction was used to quantify the number of copies of some specific denitrification functional genes. The productive zone had the highest CO2 -C, the lowest N2 O-N emissions, and the greatest microbial biomass, whereas the saline/sodic zone had the lowest CO2 -C, the highest N2 O-N emissions, and the lowest microbial biomass. Within a zone, urea application did not influence CO2 -C emissions; however, N2 O-N emissions from the urea-treated saline/sodic zone were 84 and 57% higher than from the urea-treated productive zone in 2018 and 2019, respectively. The copy number of the nitrite reductase gene, nirS, was 42-fold higher in the saline/sodic zone than in the productive soil, suggesting that the saline/sodic soil had a high potential for denitrification. These findings suggest N2 O-N emissions could be reduced by not applying N to saline/sodic zones.


Assuntos
Gases de Efeito Estufa , Microbiota , Dióxido de Carbono/análise , Óxido Nitroso/análise , Solo
2.
Ultrasound Med Biol ; 43(1): 119-128, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773345

RESUMO

Neuroimaging is a valuable diagnostic tool for the early detection of neonatal brain injury, but equipment and radiologic staff are expensive and unavailable to most hospitals in developing countries. We evaluated an affordable, portable ultrasound machine as a quantitative and qualitative diagnostic tool and to establish whether a novice sonographer could effectively operate the equipment and obtain clinically important information. Cranial ultrasonography was performed on term healthy, pre-term and term asphyxiated neonates in Rwandan and Kenyan hospitals. To evaluate the detection of ventriculomegaly and compression injuries, we measured the size of the lateral ventricles and corpus callosum. The images were also assessed for the presence of other cerebral abnormalities. Measurements were reliable across images, and cases of clinically relevant ventriculomegaly were detected. A novice sonographer had good-to-excellent agreement with an expert. This study demonstrates that affordable equipment and cranial ultrasound protocols can be used in low-resource settings to assess the newborn brain.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Unidades de Terapia Intensiva Neonatal , Ultrassonografia/métodos , Encéfalo/patologia , Lesões Encefálicas/patologia , Feminino , Humanos , Hipóxia Encefálica/diagnóstico por imagem , Recém-Nascido , Masculino , Sensibilidade e Especificidade
3.
J Environ Qual ; 44(4): 1038-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26437085

RESUMO

Biofuel policy changes in the United States have renewed interest in soybean [ (L.) Merr.] biodiesel. Past studies with varying methodologies and functional units can provide valuable information for future work. A meta-analysis of nine peer-reviewed soybean life cycle analysis (LCA) biodiesel studies was conducted on the northern Great Plains in the United States. Results of LCA studies were assimilated into a standardized system boundary and functional units for global warming (GWP), eutrophication (EP), and acidification (AP) potentials using biodiesel conversions from peer-reviewed and government documents. Factors not fully standardized included variations in NO accounting, mid- or end-point impacts, land use change, allocation, and statistical sampling pools. A state-by-state comparison of GWP lower and higher heating values (LHV, HHV) showed differences attributable to variations in spatial sampling and agricultural practices (e.g., tillage, irrigation). The mean GWP of LHV was 21.1 g·CO-eq MJ including outliers, and median EP LHV and AP LHV was 0.019 g·PO-eq MJ and 0.17 g·SO-eq MJ, respectively, using the limited data available. An LCA case study of South Dakota soybean-based biodiesel production resulted in GWP estimates (29 or 31 g·CO-eq MJ; 100% mono alkyl esters [first generation] biodiesel or 100% fatty acid methyl ester [second generation] biodiesel) similar to meta-analysis results (30.1 g·CO-eq MJ). Meta-analysis mean results, including outliers, resemble the California Low Carbon Fuel Standard for soybean biodiesel default value without land use change of 21.25 g·CO-eq MJ. Results were influenced by resource investment differences in water, fertilizer (e.g., type, application), and tillage. Future biofuel LCA studies should include these important factors to better define reasonable energy variations in regional agricultural management practices.

4.
J Environ Qual ; 44(3): 803-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024260

RESUMO

Corn stover harvesting is a common practice in the western U.S. Corn Belt. This 5-yr study used isotopic source tracking to quantify the influence of two tillage systems, two corn ( L.) surface residue removal rates, and two yield zones on soil organic C (SOC) gains and losses at three soil depths. Soil samples collected in 2008 and 2012 were used to determine C enrichment during SOC mineralization, the amount of initial SOC mineralized (SOC), and plant C retained in the soil (PCR) and sequestered C (PCR - SOC). The 30% residue soil cover after planting was achieved by the no-till and residue returned treatments and was not achieved by the chisel plow, residue removed treatment. In the 0- to 15-cm soil depth, the high yield zone had lower SOC (1.49 Mg ha) than the moderate yield zone (2.18 Mg ha), whereas in the 15- to 30-cm soil depth, SOC was higher in the 60% (1.38 Mg ha) than the 0% (0.82 Mg ha) residue removal treatment. When the 0- to 15- and 15- to 30-cm soil depths were combined, (i) 0.91 and 3.62 Mg SOC ha were sequestered in the 60 and 0% residue removal treatments; (ii) 2.51 and 0.36 Mg SOC ha were sequestered in the no-till and chisel plow treatments, and (iii) 1.16 and 1.65 Mg SOC ha were sequestered in the moderate and high yield zone treatments, respectively. The surface treatments influenced C cycling in the 0- to 15- and 15- to 30-cm depths but did not influence SOC turnover in the 30- to 60-cm depth.

5.
New Phytol ; 207(1): 196-210, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25711503

RESUMO

Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean.


Assuntos
Glycine max/genética , Glycine max/fisiologia , Proteínas de Plantas/metabolismo , Plantas Daninhas/fisiologia , Análise de Sequência de RNA/métodos , Estresse Fisiológico/genética , Sequência de Bases , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento , Regulação para Cima/genética
6.
Environ Sci Pollut Res Int ; 22(7): 5152-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25369917

RESUMO

Knowledge of how biochar impacts soil denitrification kinetics as well as the mechanisms of interactions is essential in order to better predict the nitrous oxide (N2O) mitigation capacity of biochar additions. This study had multiple experiments in which the effect of three biochar materials produced from corn stover (Zea mays L.), ponderosa pine wood residue (Pinus ponderosa Douglas ex Lawson and C. Lawson), switchgrass (Panicum virgatum L.), and their corresponding biomass materials (corn stover, ponderosa pine wood residue, and switchgrass) on cumulative N2O emissions and total denitrification in soils from two different landscape positions (crest and footslope) were studied under varying water-filled pore space (40, 70, and 90% WFPS). Cumulative N2O emissions were reduced by 30 to 70% in both crest and footslope soils. The effect of biochars and biomass treatments on cumulative N2O emissions and total denitrification were only observed at ≥40% WFPS. The denitrification enzyme activity (DEA) kinetic parameters, K s (half-saturation constant), and V max (maximum DEA rate) were both significantly reduced by biochar treatments, with reductions of 70-80% in footslope soil and 80-90 % in the crest soil. The activation energy (E a) and enthalpy of activation of DEA (ΔH) were both increased with biochar application. The trends in DEA rate constants (K s and V max) were correlated by the trends of thermodynamic parameters (activation energy E a and enthalpy of activation ΔH) for denitrifying enzyme activity (DEA). The rate constant V max/K s evaluated the capacity of biochars to mitigate the denitrification process. Denitrifying enzyme kinetic parameters can be useful in evaluating the ability of biochars to mitigate N2O gas losses from soil.


Assuntos
Biomassa , Carvão Vegetal , Desnitrificação , Solo/química , Cinética , Óxido Nitroso/química , Panicum , Pinus ponderosa , Água/química , Madeira , Zea mays
7.
J Hazard Mater ; 279: 244-56, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25064262

RESUMO

The tentative connection between the biochar surface chemical properties and their influence on microbially mediated mineralization of C, N, and S with the help of enzymes is not well established. This study was designed to investigate the effect of different biomass conversion processes (microwave pyrolysis, carbon optimized gasification, and fast pyrolysis using electricity) on the composition and surface chemistry of biochar materials produced from corn stover (Zea mays L.), switchgrass (Panicum virgatum L.), and Ponderosa pine wood residue (Pinus ponderosa Lawson and C. Lawson) and determine the effect of biochars on mineralization of C, N, and S and associated soil enzymatic activities including esterase (fluorescein diacetate hydrolase, FDA), dehydrogenase (DHA), ß-glucosidase (GLU), protease (PROT), and aryl sulfatase (ARSUL) in two different soils collected from footslope (Brookings) and crest (Maddock) positions of a landscape. Chemical properties of biochar materials produced from different batches of gasification process were fairly consistent. Biochar materials were found to be highly hydrophobic (low H/C values) with high aromaticity, irrespective of biomass feedstock and pyrolytic process. The short term incubation study showed that biochar had negative effects on microbial activity (FDA and DHA) and some enzymes including ß-glucosidase and protease.


Assuntos
Carvão Vegetal/química , Microbiologia do Solo , Biomassa , Carbono/química , Enzimas/análise , Microscopia Eletrônica de Varredura , Nitrogênio/química , Panicum/química , Pinus/química , Enxofre/química , Zea mays/química
8.
J Environ Qual ; 42(5): 1386-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24216416

RESUMO

A life-cycle assessment (LCA) model was developed to estimate the environmental impacts associated with four different U.S. Northern Great Plains (NPG) beef production systems. The LCA model followed a "cradle-to-gate" approach and incorporated all major unit processes, including mineral supplement production. Four distinct operation scenarios were modeled based on production strategies common to the NGP, and a variety of impacts were determined. The scenarios include a normal operation, early weaning of the calf, fast-tack backgrounding, and grassfed. Enteric emissions and manure emissions and handling were consistently the largest contributors to the LCA impacts. There was little variability between production scenarios except for the grassfed, where the greenhouse gas (GHG) emissions were 37% higher due to a longer finishing time and lower finishing weight. However, reductions to GHG emissions (15-24%) were realized when soil organic carbon accrual was considered and may be a more realistic estimate for the NGP. Manure emissions and handing were primary contributors to potential eutrophication and acidification impacts. Mitigation strategies to reduce LCA impacts, including diet manipulation and management strategies (i.e., treatment of manure), were considered from a whole-systems perspective. Model results can be used for guidance by NGP producers, environmental practitioners, and policymakers.


Assuntos
Efeito Estufa , Carne Vermelha , Criação de Animais Domésticos , Animais , Dióxido de Carbono , Bovinos , Meio Ambiente , Esterco , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...