Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Gut Microbes ; 16(1): 2305476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284649

RESUMO

Emerging evidence indicates that antibiotic-induced dysbiosis can play an etiological role in the pathogenesis of neuropsychiatric disorders. However, most of this evidence comes from rodent models. The objective of this study was to evaluate if antibiotic-induced gut dysbiosis can elicit changes in gut metabolites and behavior indicative of gut-brain axis disruption in common marmosets (Callithrix jacchus) - a nonhuman primate model often used to study sociability and stress. We were able to successfully induce dysbiosis in marmosets using a custom antibiotic cocktail (vancomycin, enrofloxacin and neomycin) administered orally for 28 days. This gut dysbiosis altered gut metabolite profiles, behavior, and stress reactivity. Increase in gut Fusobacterium spp. post-antibiotic administration was a novel dysbiotic response and has not been observed in any rodent or human studies to date. There were significant changes in concentrations of several gut metabolites which are either neurotransmitters (e.g., GABA and serotonin) or have been found to be moderators of gut-brain axis communication in rodent models (e.g., short-chain fatty acids and bile acids). There was an increase in affiliative behavior and sociability in antibiotic-administered marmosets, which might be a coping mechanism in response to gut dysbiosis-induced stress. Increase in urinary cortisol levels after multiple stressors provides more definitive proof that this model of dysbiosis may cause disrupted communication between gut and brain in common marmosets. This study is a first attempt to establish common marmosets as a novel model to study the impact of severe gut dysbiosis on gut-brain axis cross-talk and behavior.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Humanos , Antibacterianos/toxicidade , Callithrix , Eixo Encéfalo-Intestino , Disbiose/microbiologia , Multiômica
2.
J Intensive Care Soc ; 24(4): 427-434, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37841304

RESUMO

Aim: To describe the protocol for a multi-centre randomised controlled trial to determine whether treatment protocols monitoring daily CRP (C-reactive protein) or PCT (procalcitonin) safely allow a reduction in duration of antibiotic therapy in hospitalised adult patients with sepsis. Design: Multicentre three-arm randomised controlled trial. Setting: UK NHS hospitals. Target population: Hospitalised critically ill adults who have been commenced on intravenous antibiotics for sepsis. Health technology: Three protocols for guiding antibiotic discontinuation will be compared: (a) standard care; (b) standard care + daily CRP monitoring; (c) standard care + daily PCT monitoring. Standard care will be based on routine sepsis management and antibiotic stewardship. Measurement of outcomes and costs. Outcomes will be assessed to 28 days. The primary outcomes are total duration of antibiotics and safety outcome of all-cause mortality. Secondary outcomes include: escalation of care/re-admission; infection re-lapse/recurrence; antibiotic dose; length and level of critical care stay and length of hospital stay. Ninety-day all-cause mortality rates will also be collected. An assessment of cost effectiveness will be performed. Conclusion: In the setting of routine NHS care, if this trial finds that a treatment protocol based on monitoring CRP or PCT safely allows a reduction in duration of antibiotic therapy, and is cost effective, then this has the potential to change clinical practice for critically ill patients with sepsis. Moreover, if a biomarker-guided protocol is not found to be effective, then it will be important to avoid its use in sepsis and prevent ineffective technology becoming widely adopted in clinical practice.

3.
Front Neurosci ; 17: 1237177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719161

RESUMO

There are previous epidemiological studies reporting associations between antibiotic use and psychiatric symptoms. Antibiotic-induced gut dysbiosis and alteration of microbiota-gut-brain axis communication has been proposed to play a role in this association. In this systematic review and meta-analysis, we reviewed published articles that have presented results on changes in cognition, emotion, and behavior in rodents (rats and mice) after antibiotic-induced gut dysbiosis. We searched three databases-PubMed, Web of Science, and SCOPUS to identify such articles using dedicated search strings and extracted data from 48 articles. Increase in anxiety and depression-like behavior was reported in 32.7 and 40.7 percent of the study-populations, respectively. Decrease in sociability, social novelty preference, recognition memory and spatial cognition was found in 18.1, 35.3, 26.1, and 62.5 percent of the study-populations, respectively. Only one bacterial taxon (increase in gut Proteobacteria) showed statistically significant association with behavioral changes (increase in anxiety). There were no consistent findings with statistical significance for the potential biomarkers [Brain-derived neurotrophic factor (BDNF) expression in the hippocampus, serum corticosterone and circulating IL-6 and IL-1ß levels]. Results of the meta-analysis revealed a significant association between symptoms of negative valence system (including anxiety and depression) and cognitive system (decreased spatial cognition) with antibiotic intake (p < 0.05). However, between-study heterogeneity and publication bias were statistically significant (p < 0.05). Risk of bias was evaluated to be high in the majority of the studies. We identified and discussed several reasons that could contribute to the heterogeneity between the results of the studies examined. The results of the meta-analysis provide promising evidence that there is indeed an association between antibiotic-induced gut dysbiosis and psychopathologies. However, inconsistencies in the implemented methodologies make generalizing these results difficult. Gut microbiota depletion using antibiotics may be a useful strategy to evaluate if and how gut microbes influence cognition, emotion, and behavior, but the heterogeneity in methodologies used precludes any definitive interpretations for a translational impact on clinical practice.

4.
J Med Primatol ; 52(6): 353-360, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655719

RESUMO

BACKGROUND: Alouatta palliata palliata are an ecologically flexible howler monkey subspecies that has recently been relisted as Endangered. Populations are declining through much of the subspecies' range, including at our study site at La Pacifica, Costa Rica. Our objectives were to screen blood hematology and biochemistry samples collected from this wild population to elucidate their baseline health. METHODS: We collected blood samples from 38 adult individuals from across the study site and analyzed 13 hematology and 14 biochemistry parameters. RESULTS: Most hematology and blood biochemistry parameter values were similar between males and females. However, mean hemoglobin was significantly lower, and mean white blood cell count was significantly higher in females; and mean calcium and mean creatinine were significantly lower in females compared to males. CONCLUSIONS: Overall, the La Pacifica population appeared healthy based on the blood parameters analyzed from sampled individuals. Our results were also largely consistent with published data available from other populations of A. p. palliata, and with reference values for captive Alouatta caraya.


Assuntos
Alouatta caraya , Alouatta , Hematologia , Feminino , Masculino , Animais , Costa Rica
5.
Yearb Med Inform ; 32(1): 89-98, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414029

RESUMO

BACKGROUND: A significant portion of individuals in the United States and worldwide experience diseases related to or driven by diet. As research surrounding user-centered design and the microbiome grows, movement of the spectrum of translational science from bench to bedside for improvement of human health through nutrition becomes more accessible. In this literature survey, we examined recent literature examining informatics research at the interface of nutrition and the microbiome. OBJECTIVES: The objective of this survey was to synthesize recent literature describing how technology is being applied to understand health at the interface of nutrition and the microbiome focusing on the perspective of the consumer. METHODS: A survey of the literature published between January 1, 2021 and October 10, 2022 was performed using the PubMed database and resulting literature was evaluated against inclusion and exclusion criteria. RESULTS: A total of 139 papers were retrieved and evaluated against inclusion and exclusion criteria. After evaluation, 45 papers were reviewed in depth revealing four major themes: (1) microbiome and diet, (2) usability,(3) reproducibility and rigor, and (4) precision medicine and precision nutrition. CONCLUSIONS: A review of the relationships between current literature on technology, nutrition and the microbiome, and self-management of dietary patterns was performed. Major themes that emerged from this survey revealed exciting new horizons for consumer management of diet and disease, as well as progress towards elucidating the relationship between diet, the microbiome, and health outcomes. The survey revealed continuing interest in the study of diet-related disease and the microbiome and acknowledgement of needs for data re-use, sharing, and unbiased and rigorous measurement of the microbiome. The literature also showed trends toward enhancing the usability of digital interventions to support consumer health and home management, and consensus building around how precision medicine and precision nutrition may be applied in the future to improve human health outcomes and prevent diet-related disease.


Assuntos
Microbiota , Estado Nutricional , Humanos , Estados Unidos , Reprodutibilidade dos Testes , Dieta , Informática
6.
Ann Clin Biochem ; 60(6): 386-395, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37208338

RESUMO

BACKGROUND: The 1 mg overnight dexamethasone suppression test (ONDST) is recommended for the differential diagnosis of Cushing's syndrome and the investigation of adrenal incidentalomas. Despite documented variation in serum cortisol immunoassay performance, little has been published regarding its effect on the ONDST. AIMS: Assess the performance of three immunoassay platforms (Roche Elecsys II, Abbott Alinity & Siemens Centaur) when compared to a liquid chromatography tandem mass spectrometry (LC-MS/MS) method. METHODS: Samples (n = 77) sent to the laboratory as part of an ONDST were retrieved prior to disposal, anonymized, and analysed on all platforms. Samples with factors impacting immunoassay analysis quality were excluded. Results were statistically compared to an LC-MS/MS method that previously demonstrated excellent comparability to a candidate reference method. RESULTS: The Roche gen II showed a mean bias of -2.4 nmol/L and a Passing-Bablok fit of y = -0.9 + 0.97x. This was not affected by sex. The Abbott showed a mean bias -18.8 nmol/L, and a fit of y = -11.3 + 0.88x. This bias was -20.7 nmol/L in females versus -17.2 nmol/L in males. The Siemens had a mean bias of 2.3 nmol/L and a fit of y = 1.4 + 1.07x. This bias was 5.7 nmol/L in males versus -1.0 nmol/L in females. CONCLUSIONS: Clinicians should be aware of the method-dependent variation that exists within serum cortisol analysis during the ONDSTs. Roche and Siemens aligned more closely with LC-MS/MS while the Abbot may cause a reduction in ONDST sensitivity. This data supports assay-specific cut-offs for the ONDST.


Assuntos
Neoplasias das Glândulas Suprarrenais , Hidrocortisona , Masculino , Feminino , Humanos , Hidrocortisona/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Dexametasona
7.
J Med Chem ; 66(3): 2116-2142, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696579

RESUMO

Chlamydia trachomatis (CT) causes the most prevalent sexually transmitted bacterial disease in the United States. The lack of drug selectivity is one of the main challenges of the current antichlamydial pharmacotherapy. The metabolic needs of CT are controlled, among others, by cylindrical proteases and their chaperones (e.g., ClpX). It has been shown that dihydrothiazepines can disrupt CT-ClpXP. Based on this precedent, we synthesized a dihydrothiazepine library and characterized its antichlamydial activity using a modified semi-high-throughput screening assay. Then, we demonstrated their ability to inhibit ClpX ATPase activity in vitro, supporting ClpX as a target. Further, our lead compound displayed a promising selectivity profile against CT, acceptable cytotoxicity, no mutagenic potential, and good in vitro stability. A two-dimensional quantitative structure-activity relationship (2D QSAR) model was generated as a support tool in the identification of more potent antichlamydial molecules. This study suggests dihydrothiazepines are a promising starting point for the development of new and selective antichlamydial drugs.


Assuntos
Chlamydia trachomatis , Peptídeo Hidrolases , Computadores
8.
Microb Ecol ; 85(4): 1608-1619, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35562600

RESUMO

Most studies of wildlife gut microbiotas understandably rely on feces to approximate consortia along the gastrointestinal tract. We therefore compared microbiome structure and predicted metagenomic function in stomach, small intestinal, cecal, and colonic samples from 52 lemurs harvested during routine necropsies. The lemurs represent seven genera (Cheirogaleus, Daubentonia, Varecia, Hapalemur, Eulemur, Lemur, Propithecus) characterized by diverse feeding ecologies and gut morphologies. In particular, the hosts variably depend on fibrous foodstuffs and show correlative morphological complexity in their large intestines. Across host lineages, microbiome diversity, variability, membership, and function differed between the upper and lower gut, reflecting regional tradeoffs in available nutrients. These patterns related minimally to total gut length but were modulated by fermentation capacity (i.e., the ratio of small to large intestinal length). Irrespective of feeding strategy, host genera with limited fermentation capacity harbored more homogenized microbiome diversity along the gut, whereas those with expanded fermentation capacity harbored cecal and colonic microbiomes with greater diversity and abundant fermentative Ruminococcaceae taxa. While highlighting the value of curated sample repositories for retrospective comparisons, our results confirm that the need to survive on fibrous foods, either routinely or in hypervariable environments, can shape the morphological and microbial features of the lower gut.


Assuntos
Lemur , Lemuridae , Microbiota , Strepsirhini , Animais , Estudos Retrospectivos
9.
NPJ Biofilms Microbiomes ; 8(1): 12, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301322

RESUMO

The gut microbiome of primates is known to be influenced by both host genetic background and subsistence strategy. However, these inferences have been made mainly based on adaptations in bacterial composition - the bacteriome and have commonly overlooked the fungal fraction - the mycobiome. To further understand the factors that shape the gut mycobiome of primates and mycobiome-bacteriome interactions, we sequenced 16 S rRNA and ITS2 markers in fecal samples of four different nonhuman primate species and three human groups under different subsistence patterns (n = 149). The results show that gut mycobiome composition in primates is still largely unknown but highly plastic and weakly structured by primate phylogeny, compared with the bacteriome. We find significant gut mycobiome overlap between captive apes and human populations living under industrialized subsistence contexts; this is in contrast with contemporary hunter-gatherers and agriculturalists, who share more mycobiome traits with diverse wild-ranging nonhuman primates. In addition, mycobiome-bacteriome interactions were specific to each population, revealing that individual, lifestyle and intrinsic ecological factors affect structural correspondence, number, and kind of interactions between gut bacteria and fungi in primates. Our findings indicate a dominant effect of ecological niche, environmental factors, and diet over the phylogenetic background of the host, in shaping gut mycobiome composition and mycobiome-bacteriome interactions in primates.


Assuntos
Microbioma Gastrointestinal , Micobioma , Animais , Bactérias/genética , Filogenia , Primatas
10.
Animals (Basel) ; 11(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34944176

RESUMO

The last few decades have seen an outpouring of gastrointestinal (GI) microbiome studies across diverse host species. Studies have ranged from assessments of GI microbial richness and diversity to classification of novel microbial lineages. Assessments of the "normal" state of the GI microbiome composition across multiple host species has gained increasing importance for distinguishing healthy versus diseased states. This study aimed to determine baselines and trends over time to establish "typical" patterns of GI microbial richness and diversity, as well as inter-individual variation, in three populations of western lowland gorillas (Gorilla gorilla gorilla) under human care at three zoological institutions in North America. Fecal samples were collected from 19 western lowland gorillas every two weeks for seven months (n = 248). Host identity and host institution significantly affected GI microbiome community composition (p < 0.05), although host identity had the most consistent and significant effect on richness (p = 0.03) and Shannon diversity (p = 0.004) across institutions. Significant changes in microbial abundance over time were observed only at Denver Zoo (p < 0.05). Our results suggest that individuality contributes to most of the observed GI microbiome variation in the study populations. Our results also showed no significant changes in any individual's microbial richness or Shannon diversity during the 7-month study period. While some microbial taxa (Prevotella, Prevotellaceae and Ruminococcaceae) were detected in all gorillas at varying levels, determining individual baselines for microbial composition comparisons may be the most useful diagnostic tool for optimizing non-human primate health under human care.

11.
Cell Rep ; 37(8): 110057, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818542

RESUMO

The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear how this variation impacts host physiology across species and whether this effect can be mediated through microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the transcriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We find that most host genes exhibit a conserved response, whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a divergent response, whereby they respond only to microbiomes from specific host species. Such genes are associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn's disease. Last, we find that inflammation-associated microbial species regulate the expression of host genes previously associated with inflammatory bowel disease, suggesting health-related consequences for species-specific host-microbiome interactions across hominids.


Assuntos
Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Hominidae/microbiologia , Animais , Bactérias/genética , Células Epiteliais/metabolismo , Fezes/microbiologia , Expressão Gênica/genética , Gorilla gorilla/microbiologia , Hominidae/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Microbiota/genética , Pan troglodytes/microbiologia , Filogenia , Pongo/microbiologia , RNA Ribossômico 16S/genética , Especificidade da Espécie
12.
Infect Immun ; 89(10): e0012221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097505

RESUMO

Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.


Assuntos
Imunidade Inata/imunologia , Complexo Antígeno L1 Leucocitário/imunologia , Periodontite/imunologia , Perda do Osso Alveolar/imunologia , Animais , Disbiose/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL
13.
Evol Bioinform Online ; 16: 1176934320965943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281440

RESUMO

Childhood obesity is a serious public health problem worldwide. Perturbations in the gut microbiota composition have been associated with the development of obesity in both children and adults. Probiotics, on the other hand, are proven to restore the composition of the gut microbiome which helps reduce the development of obesity. However, data on the effect of probiotics on gut microbiota and its association with childhood obesity is limited. This study aims to determine the effect of probiotics supplement intervention on gut microbiota profiles in obese and normal-weight children. A total of 37 children, 17 normal weight, and 20 overweight school children from a government school in Selangor were selected to participate in this study. Participants were further divided into intervention and control groups. The intervention groups received daily probiotic drinks while the control groups continued eating their typical diet. Fecal samples were collected from the participants for DNA extraction. The hypervariable V3 and V4 regions of 16S rRNA gene were amplified and sequenced using the Illumina MiSeq platform. No significant differences in alpha diversity were observed between normal weight and obese children in terms of the Shannon Index for evenness or species richness. However, a higher intervention effect on alpha diversity was observed among normal-weight participants compared to obese. The participants' microbiome was found to fluctuate throughout the study. Analysis of the taxa at species level showed an increase in Bacteroides ovatus among the normal weight cohort. Genus-level comparison revealed a rise in genus Lachnospira and Ruminococcus in the overweight participants after intervention, compared to the normal-weight participants. The probiotics intervention causes an alteration in gut microbiota composition in both normal and overweight children. Though the association could not be defined statistically, this study has provided an improved understanding of the intervention effect of probiotics on gut microbiome dysbiosis in an underrepresented population.

14.
mSphere ; 5(5)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115839

RESUMO

Fluoroquinolones and cephalosporins are critically important antimicrobial classes for both human and veterinary medicine. We previously found a drastic increase in enrofloxacin resistance in clinical Escherichia coli isolates collected from diseased pigs from the United States over 10 years (2006 to 2016). However, the genetic determinants responsible for this increase have yet to be determined. The aim of the present study was to identify and characterize the genetic basis of resistance against fluoroquinolones (enrofloxacin) and extended-spectrum cephalosporins (ceftiofur) in swine E. coli isolates using whole-genome sequencing (WGS). blaCMY-2 (carried by IncA/C2, IncI1, and IncI2 plasmids), blaCTX-M (carried by IncF, IncHI2, and IncN plasmids), and blaSHV-12 (carried by IncHI2 plasmids) genes were present in 87 (82.1%), 19 (17.9%), and 3 (2.83%) of the 106 ceftiofur-resistant isolates, respectively. Of the 110 enrofloxacin-resistant isolates, 90 (81.8%) had chromosomal mutations in gyrA, gyrB, parA, and parC genes. Plasmid-mediated quinolone resistance genes [qnrB77, qnrB2, qnrS1, qnrS2, and aac-(6)-lb'-cr] borne on ColE, IncQ2, IncN, IncF, and IncHI2 plasmids were present in 24 (21.8%) of the enrofloxacin-resistant isolates. Virulent IncF plasmids present in swine E. coli isolates were highly similar to epidemic plasmids identified globally. High-risk E. coli clones, such as ST744, ST457, ST131, ST69, ST10, ST73, ST410, ST12, ST127, ST167, ST58, ST88, ST617, ST23, etc., were also found in the U.S. swine population. Additionally, the colistin resistance gene (mcr-9) was present in several isolates. This study adds valuable information regarding resistance to critical antimicrobials with implications for both animal and human health.IMPORTANCE Understanding the genetic mechanisms conferring resistance is critical to design informed control and preventive measures, particularly when involving critically important antimicrobial classes such as extended-spectrum cephalosporins and fluoroquinolones. The genetic determinants of extended-spectrum cephalosporin and fluoroquinolone resistance were highly diverse, with multiple plasmids, insertion sequences, and genes playing key roles in mediating resistance in swine Escherichia coli Plasmids assembled in this study are known to be disseminated globally in both human and animal populations and environmental samples, and E. coli in pigs might be part of a global reservoir of key antimicrobial resistance (AMR) elements. Virulent plasmids found in this study have been shown to confer fitness advantages to pathogenic E. coli strains. The presence of international, high-risk zoonotic clones provides worrisome evidence that resistance in swine isolates may have indirect public health implications, and the swine population as a reservoir for these high-risk clones should be continuously monitored.


Assuntos
Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Animais , Antibacterianos/farmacologia , DNA Bacteriano/genética , Infecções por Escherichia coli/microbiologia , Saúde Global , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Suínos , Estados Unidos
15.
mSystems ; 5(2)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209720

RESUMO

Social behavior can alter the microbiome composition via transmission among social partners, but there have been few controlled experimental studies of gut microbiome transmission among social partners in primates. We collected longitudinal fecal samples from eight unrelated male-female pairs of marmoset monkeys prior to pairing and for 8 weeks following pairing. We then sequenced 16S rRNA to characterize the changes in the gut microbiome that resulted from the pairing. Marmoset pairs had a higher similarity in gut microbiome communities after pairing than before pairing. We discovered sex differences in the degrees of change in gut microbiome communities following pairing. Specifically, the gut microbiome communities in males exhibited greater dissimilarity from the prepairing stage (baseline) than the gut microbiome communities in females. Conversely, females showed a gradual stabilization in the rate of the gut microbiome community turnover. Importantly, we found that the male fecal samples harbored more female-source gut microbes after pairing, especially early in pairing (paired test, P < 0.05), possibly linked to sex bias in the frequencies of social behavior. From this controlled study, we report for the first time that pair-living primates undergo significant changes in gut microbiome during pairing and that females transmit more microbes to their partners than males do. The potential biases influencing which microbes are transmitted on the basis of sex and whether they are due to sex biases in other behavioral or physiological features need to be widely investigated in other nonhuman primates and humans in the future.IMPORTANCE In this controlled study, we collected longitudinal fecal samples from 16 male and female marmoset monkeys for 2 weeks prior to and for 8 weeks after pairing in male-female dyads. We report for the first time that marmoset monkeys undergo significant changes to the gut microbiome following pairing and that these changes are sex-biased; i.e., females transmit more microbes to their social partners than males do. Marmosets exhibit pair bonding behavior such as spatial proximity, physical contact, and grooming, and sex biases in these behavioral patterns may contribute to the observed sex bias in social transmission of gut microbiomes.

16.
Anim Microbiome ; 2(1): 16, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33499991

RESUMO

BACKGROUND: The gut microbiome harbors trillions of bacteria that play a major role in dietary nutrient extraction and host metabolism. Metabolic diseases such as obesity and diabetes are associated with shifts in microbiome composition and have been on the rise in Westernized or highly industrialized countries. At the same time, Westernized diets low in dietary fiber have been shown to cause loss of gut microbial diversity. However, the link between microbiome composition, loss of dietary fiber, and obesity has not been well defined. RESULTS: To study the interactions between gut microbiota, dietary fiber, and weight gain, we transplanted captive and wild douc gut microbiota into germ-free mice and then exposed them to either a high- or low-fiber diet. The group receiving captive douc microbiota gained significantly more weight, regardless of diet, while mice receiving a high-fiber diet and wild douc microbiota remained lean. In the presence of a low-fiber diet, the wild douc microbiota partially prevented weight gain. Using 16S rRNA gene amplicon sequencing we identified key bacterial taxa in each group, specifically a high relative abundance of Bacteroides and Akkermansia in captive douc FMT mice and a higher relative abundance of Lactobacillus and Clostridium in the wild douc FMT mice. CONCLUSIONS: In the context of our germ-free mouse experiment, wild douc microbiota could serve as a reservoir for microbes for cross-species transplants. Our results suggest that wild douc microbiota are tailored to diverse fiber diets and can prevent weight gain when exposed to a native diet.

17.
mBio ; 10(5)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615957

RESUMO

The microbiome is important to all animals, including poultry, playing a critical role in health and performance. Low-dose antibiotics have historically been used to modulate food production animals and their microbiome. Identifying alternatives to antibiotics conferring similar modulatory properties has been elusive. The purpose of this study was to determine if a host-tailored probiotic could recapitulate effects of a low-dose antibiotic on host response and the developing microbiome. Over 13 days of life, turkey poults were supplemented continuously with a low-dose antibiotic or oral supplementation of a prebiotic with or without two different probiotics (8 cage units, n = 80 per group). Gastrointestinal bacterial and fungal communities of poults were characterized by 16S rRNA gene and ITS2 amplicon sequencing. Localized and systemic host gene expression was assessed using transcriptome sequencing (RNA-Seq), kinase activity was assessed by avian-specific kinome peptide arrays, and performance parameters were assessed. We found that development of the early-life microbiome of turkey poults was tightly ordered in a tissue- and time-specific manner. Low-dose antibiotic and turkey-tailored probiotic supplementation, but not nontailored probiotic supplementation, elicited similar shifts in overall microbiome composition during development compared to controls. Treatment-induced bacterial changes were accompanied by parallel shifts in the fungal community and host gene expression and enhanced performance metrics. These results were validated in pen trials that identified further additive effects of the turkey-tailored probiotic combined with different prebiotics. Alternative approaches to low-dose antibiotic use in poultry are feasible and can be optimized utilizing the indigenous poultry microbiome. Similar approaches may also be beneficial for humans.IMPORTANCE Alternative approaches are greatly needed to reduce the need for antibiotic use in food animal production. This study utilized a pipeline for the development of a host-tailored probiotic to enhance performance in commercial turkeys and modulate their microbiota, similar to the effects of low-dose antibiotic administration. We determined that a host-tailored probiotic, developed in the context of the commercial turkey gut microbiome, was more effective at modulating these parameters than a nontailored probiotic cocktail. Furthermore, the host-tailored probiotic mimicked many of the effects of a low-dose antibiotic growth promoter. Surprisingly, the effects of the antibiotic growth promoter and host-tailored probiotic were observed across kingdoms, illustrating the coordinated interkingdom effects of these approaches. This work suggests that tailored approaches to probiotic development hold promise for modulating the avian host and its microbiota.


Assuntos
Antibacterianos/farmacologia , Probióticos , Animais , Microbiota/efeitos dos fármacos , Micobioma/efeitos dos fármacos , RNA Ribossômico 16S/genética , Perus
18.
Biol Lett ; 15(6): 20190028, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31185820

RESUMO

Both host phylogenetic placement and feeding strategy influence the structure of the gut microbiome (GMB); however, parsing their relative contributions presents a challenge. To meet this challenge, we compared GMB structure in two genera of lemurs characterized by different dietary specializations, the frugivorous brown lemurs ( Eulemur spp.) and the folivorous sifakas ( Propithecus spp.). These genera sympatrically occupy similar habitats (dry forests and rainforests) and diverged over similar evolutionary timescales. We collected fresh faeces from 12 species (six per host genus), at seven sites across Madagascar, and sequenced the 16S rRNA gene to determine GMB membership, diversity and variability. The lemurs' GMBs clustered predominantly by host genus; nevertheless, within genera, host relatedness did not predict GMB distance between species. The GMBs of brown lemurs had greater evenness and diversity, but were more homogeneous across species, whereas the GMBs of sifakas were differentiated between habitats. Thus, over relatively shallow timescales, environmental factors can override the influence of host phylogenetic placement on GMB phylogenetic composition. Moreover, feeding strategy can underlie the relative strength of host-microbiome coadaptation, with Madagascar's folivores perhaps requiring locally adapted GMBs to facilitate their highly specialized diets.


Assuntos
Microbioma Gastrointestinal , Lemur , Lemuridae , Animais , Madagáscar , Filogenia , RNA Ribossômico 16S
19.
Am J Primatol ; 81(10-11): e22977, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30997937

RESUMO

The mammalian order primates contains wide species diversity. Members of the subfamily Colobinae are unique amongst extant primates in that their gastrointestinal systems more closely resemble those of ruminants than other members of the primate order. In the growing literature surrounding nonhuman primate microbiomes, analysis of microbial communities has been limited to the hindgut, since few studies have captured data on other gut sites, including the foregut of colobine primates. In this study, we used the red-shanked douc (Pygathrix nemaeus) as a model for colobine primates to study the relationship between gastrointestinal bacterial community structure and gut site within and between subjects. We analyzed fecal and pregastric stomach content samples, representative of the hindgut and foregut respectively, using 16S recombinant DNA (rDNA) sequencing and identified microbiota using closed-reference operational taxonomic unit (OTU) picking against the GreenGenes database. Our results show divergent bacterial communities clearly distinguish the foregut and hindgut microbiomes. We found higher bacterial biodiversity and a higher Firmicutes:Bacteroides ratio in the hindgut as opposed to the foregut. These gut sites showed strong associations with bacterial function. Specifically, energy metabolism was upregulated in the hindgut, whereas detoxification was increased in the foregut. Our results suggest a red-shanked douc's foregut microbiome is no more concordant with its own hindgut than it is with any other red-shanked douc's hindgut microbiome, thus reinforcing the notion that the bacterial communities of the foregut and hindgut are distinctly unique. OPEN PRACTICES: This article has been awarded Open Materials and Open Data badges. All materials and data are publicly accessible via the IRIS Repository at https://www.iris-database.org/iris/app/home/detail?id=york:934328. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.


Assuntos
Bactérias/classificação , Colobinae/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/genética , Biodiversidade , Fezes/microbiologia , Genoma Bacteriano , Intestinos/microbiologia , Intestinos/fisiologia , Análise de Sequência de DNA , Estômago/microbiologia , Estômago/fisiologia
20.
J Med Primatol ; 48(2): 114-122, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536921

RESUMO

BACKGROUND: The aim of this study was to longitudinally investigate the prevalence and characterization of Campylobacter spp. from non-human primates primate (NHP) with a history of endemic diarrhea housed at Como Park Zoo. METHODS: Fecal samples from 33 symptom-free NHP belonging to eight different species were collected weekly for 9 weeks. Species-level characterization and phylogenetic analysis of isolates included biochemical testing and 16S rRNA sequencing. RESULTS: Campylobacter spp. were isolated from the feces of 42% (14/33) of the primates. Three Campylobacter spp. (C upsaliensis, C jejuni, and novel Campylobacter sp.) were identified from three NHP species. A possible positive host Campylobacter species-specificity was observed. However, no statistical association was observed between the isolation of Campylobacter spp. and age and sex of the animal. CONCLUSIONS: The study revealed the value of conducting repeated fecal sampling to establish the overall prevalence of Campylobacter in zoo-maintained NHP; it also importantly identifies a novel Campylobacter sp. isolated from white-faced saki monkeys.


Assuntos
Doenças dos Símios Antropoides/epidemiologia , Infecções por Campylobacter/veterinária , Campylobacter/isolamento & purificação , Doenças dos Macacos/epidemiologia , Animais , Animais de Zoológico , Doenças dos Símios Antropoides/microbiologia , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/isolamento & purificação , Campylobacter upsaliensis/isolamento & purificação , Feminino , Haplorrinos , Hominidae , Masculino , Minnesota/epidemiologia , Doenças dos Macacos/microbiologia , Filogenia , Prevalência , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...