Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Blood Adv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598725

RESUMO

The t(1;19) translocation, which codes for the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B cell receptor (preBCR+) phenotype. Relapse in E2A-PBX1+ ALL patients frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased shRNA library screening approaches, we identified Bruton's tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, combination of dasatinib with BTK inhibitors (BTKi) (ibrutinib, acalabrutinib or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced PLCG2 and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, reducing particularly CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse E2A-PBX1+/preBCR+ ALL in most of performed assays, and the combination of dasatinib and BTKi is very effective in reducing CNS-infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.

4.
Blood Adv ; 7(22): 7087-7099, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37824841

RESUMO

Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Transdução de Sinais , Camundongos , Humanos , Animais , Criança , Ligantes , RNA de Cadeia Dupla/farmacologia , Linfócitos B
5.
Cancers (Basel) ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686604

RESUMO

The multi-kinase inhibitor dasatinib has been implicated to be effective in pre-B-cell receptor (pre-BCR)-positive acute lymphoblastic leukemia (ALL) expressing the E2A-PBX1 fusion oncoprotein. The TGFß signaling pathway is involved in a wide variety of cellular processes, including embryonic development and cell homeostasis, and it can have dual roles in cancer: suppressing tumor growth at early stages and mediating tumor progression at later stages. In this study, we identified the upregulation of the TGFß signaling pathway in our previously generated human dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells using global transcriptomic analysis. We confirm the upregulation of the TGFß pathway member SMAD3 at the transcriptional and translational levels in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Hence, dasatinib blocks, at least partially, TGFß-induced SMAD3 phosphorylation in several B-cell precursor (BCP) ALL cell lines as well as in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Activation of the TGFß signaling pathway by TGF-ß1 leads to growth inhibition by cell cycle arrest at the G0/G1 stage, increase in apoptosis and transcriptional changes of SMAD-targeted genes, e.g. c-MYC downregulation, in pre-BCR+/E2A-PBX1+ ALL cells. These results provide a better understanding about the role that the TGFß signaling pathway plays in leukemogenesis of BCP-ALL as well as in secondary drug resistance to dasatinib.

6.
Blood Adv ; 7(11): 2504-2519, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36705973

RESUMO

Acute myeloid leukemia (AML) with mixed-lineage leukemia (MLL) gene rearrangement (MLLr) comprises a cellular hierarchy in which a subpopulation of cells serves as functional leukemia stem cells (LSCs). They are maintained by a unique gene expression program and chromatin states, which are thought to reflect the actions of enhancers. Here, we delineate the active enhancer landscape and observe pervasive enhancer malfunction in LSCs. Reconstruction of regulatory networks revealed a master set of hematopoietic transcription factors. We show that EP300 is an essential transcriptional coregulator for maintaining LSC oncogenic potential because it controls essential gene expression through modulation of H3K27 acetylation and assessments of transcription factor dependencies. Moreover, the EP300 inhibitor A-485 affects LSC growth by targeting enhancer activity via histone acetyltransferase domain inhibition. Together, these data implicate a perturbed MLLr-specific enhancer accessibility landscape, suggesting the possibility for disruption of the LSC enhancer regulatory axis as a promising therapeutic strategy in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Cromatina , Regulação da Expressão Gênica , Oncogenes , Células-Tronco/metabolismo
7.
Cancer Gene Ther ; 29(11): 1751-1760, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35794338

RESUMO

B-cell precursor acute lymphoblastic leukemias (B-ALL) are characterized by the activation of signaling pathways, which are involved in survival and proliferation of leukemia cells. Using an unbiased shRNA library screen enriched for targeting signaling pathways, we identified MTOR as the key gene on which human B-ALL E2A-PBX1+ RCH-ACV cells are dependent. Using genetic and pharmacologic approaches, we investigated whether B-ALL cells depend on MTOR upstream signaling pathways including PI3K/AKT and the complexes MTORC1 or MTORC2 for proliferation and survival in vitro and in vivo. Notably, the combined inhibition of MTOR and AKT shows a synergistic effect on decreased cell proliferation in B-ALL with different karyotypes. Hence, B-ALL cells were more dependent on MTORC2 rather than MTORC1 complex in genetic assays. Using cell metabolomics, we identified changes in mitochondrial fuel oxidation after shRNA-mediated knockdown or pharmacological inhibition of MTOR. Dependence of the cells on fatty acid metabolism for their energy production was increased upon inhibition of MTOR and associated upstream signaling pathways, disclosing a possible target for a combination therapy. In conclusion, B-ALL are dependent on the PI3K/AKT/MTOR signaling pathway and the combination of specific small molecules targeting this pathway appears to be promising for the treatment of B-ALL patients.


Assuntos
Fosfatidilinositol 3-Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proliferação de Células , Linhagem Celular Tumoral
8.
Nat Med ; 28(5): 1083-1094, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35130561

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Assuntos
COVID-19 , Influenza Humana , COVID-19/diagnóstico , Humanos , Microfluídica , SARS-CoV-2/genética
9.
J Clin Invest ; 130(6): 2827-2844, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338640

RESUMO

Inherited bone marrow failure syndromes (IBMFSs) are a heterogeneous group of disorders characterized by defective hematopoiesis, impaired stem cell function, and cancer susceptibility. Diagnosis of IBMFS presents a major challenge due to the large variety of associated phenotypes, and novel, clinically relevant biomarkers are urgently needed. Our study identified nuclear interaction partner of ALK (NIPA) as an IBMFS gene, as it is significantly downregulated in a distinct subset of myelodysplastic syndrome-type (MDS-type) refractory cytopenia in children. Mechanistically, we showed that NIPA is major player in the Fanconi anemia (FA) pathway, which binds FANCD2 and regulates its nuclear abundance, making it essential for a functional DNA repair/FA/BRCA pathway. In a knockout mouse model, Nipa deficiency led to major cell-intrinsic defects, including a premature aging phenotype, with accumulation of DNA damage in hematopoietic stem cells (HSCs). Induction of replication stress triggered a reduction in and functional decline of murine HSCs, resulting in complete bone marrow failure and death of the knockout mice with 100% penetrance. Taken together, the results of our study add NIPA to the short list of FA-associated proteins, thereby highlighting its potential as a diagnostic marker and/or possible target in diseases characterized by hematopoietic failure.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares , Animais , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Células-Tronco Hematopoéticas/patologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Ligação Proteica
10.
Cancers (Basel) ; 12(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32015298

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. While frontline chemotherapy regimens are generally very effective, the prognosis for patients whose leukemia returns remains poor. The presence of measurable residual disease (MRD) in bone marrow at the completion of induction therapy is the strongest predictor of relapse, suggesting that strategies to eliminate the residual leukemic blasts from this niche could reduce the incidence of recurrence. We have previously reported that toll-like receptor (TLR) agonists achieve durable T cell-mediated protection in transplantable cell line-based models of B cell precursor leukemia (B-ALL). However, the successful application of TLR agonist therapy in an MRD setting would require the induction of anti-leukemic immune activity specifically in the bone marrow, a site of the chemotherapy-resistant leukemic blasts. In this study, we compare the organ-specific depletion of human and mouse primary B-ALL cells after systemic administration of endosomal TLR agonists. Despite comparable splenic responses, only the TLR9 agonist induced strong innate immune responses in the bone marrow and achieved a near-complete elimination of B-ALL cells. This pattern of response was associated with the most significantly prolonged disease-free survival. Overall, our findings identify innate immune activity in the bone marrow that is associated with durable TLR-induced protection against B-ALL outgrowth.

11.
Infect Control Hosp Epidemiol ; 41(4): 396-399, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983357

RESUMO

OBJECTIVE: Different manufacturers recommend different levels of disinfection for oxygen nipple and nut adaptors, also known as Christmas-tree adaptors (CTAs). We aimed to determine the bacterial contamination rates of CTAs before and after clinical use and whether disinfection wipes effectively eliminate bacteria from CTAs. METHODS: CTAs were swabbed for bacteria directly from the shipment box or after use in a medical intensive care unit to determine levels of contamination. CTAs were also inoculated in the laboratory with a variety of bacteria and disinfected with either 0.5% hydrogen peroxide (Oxivir 1) or 0.25% tetra-ammonium chloride with 44.50% isopropyl alcohol (Super Sani-Cloth), and the effectiveness of each wipe was determined by comparing the bacterial recovery before and after disinfection. RESULTS: CTAs exhibit low levels of bacterial burden before and after clinical use. Both disinfecting wipes were effective at removing bacteria from the CTAs. CONCLUSIONS: Low-level disinfection of CTAs is appropriate prior to redeployment in the clinical setting.


Assuntos
Descontaminação/métodos , Desinfetantes/farmacologia , Equipamentos e Provisões/microbiologia , Bactérias/efeitos dos fármacos , Equipamentos Descartáveis , Contaminação de Equipamentos/prevenção & controle , Humanos , Oxigênio
12.
Blood Adv ; 3(19): 2825-2835, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31582391

RESUMO

Chromosomal rearrangements involving the mixed lineage leukemia (MLL) gene, also known as KMT2A, are often observed in human leukemias and are generally associated with a poor prognosis. To model these leukemias, we applied clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL chromosomal rearrangements in human hematopoietic stem and progenitor cells purified from umbilical cord blood. Electroporation of ribonucleoprotein complexes containing chemically modified synthetic single guide RNAs and purified Cas9 protein induced translocations between chromosomes 9 and 11 [t(9;11)] at an efficiency >1%. Transplantation of gene-edited cells into immune-compromised mice rapidly induced acute leukemias of different lineages and often with multiclonal origins dictated by the duration of in vitro culture prior to transplantation. Breakpoint junction sequences served as biomarkers to monitor clonal selection and progression in culture and in vivo. High-dimensional cell surface and intracellular protein analysis by mass cytometry (CyTOF) revealed that gene-edited leukemias recapitulated disease-specific protein expression observed in human patients and showed that MLL-rearranged (MLLr) mixed phenotype acute leukemias (MPALs) were more similar to acute myeloid leukemias (AMLs) than to acute lymphoblastic leukemias (ALLs). Therefore, highly efficient generation of MLL chromosomal translocations in primary human blood stem cells using CRISPR/Cas9 reliably models human acute MLLr leukemia and provides an experimental platform for basic and translational studies of leukemia biology and therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Leucemia Mieloide Aguda/genética , Células-Tronco/metabolismo , Translocação Genética/genética , Animais , Humanos , Camundongos
14.
Sci Rep ; 9(1): 4915, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894657

RESUMO

The PBX1 homeodomain transcription factor is converted by t(1;19) chromosomal translocations in acute leukemia into the chimeric E2A-PBX1 oncoprotein. Fusion with E2A confers potent transcriptional activation and constitutive nuclear localization, bypassing the need for dimerization with protein partners that normally stabilize and regulate import of PBX1 into the nucleus, but the mechanisms underlying its oncogenic activation are incompletely defined. We demonstrate here that E2A-PBX1 self-associates through the PBX1 PBC-B domain of the chimeric protein to form higher-order oligomers in t(1;19) human leukemia cells, and that this property is required for oncogenic activity. Structural and functional studies indicate that self-association facilitates the binding of E2A-PBX1 to DNA. Mutants unable to self-associate are transformation defective, however their oncogenic activity is rescued by the synthetic oligomerization domain of FKBP, which confers conditional transformation properties on E2A-PBX1. In contrast to self-association, PBX1 protein domains that mediate interactions with HOX DNA-binding partners are dispensable. These studies suggest that oligomeric self-association may compensate for the inability of monomeric E2A-PBX1 to stably bind DNA and circumvents protein interactions that otherwise modulate PBX1 stability, nuclear localization, DNA binding, and transcriptional activity. The unique dependence on self-association for E2A-PBX1 oncogenic activity suggests potential approaches for mechanism-based targeted therapies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos Par 1/química , Cromossomos Humanos Par 19/química , DNA de Neoplasias/metabolismo , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Transcrição Gênica , Translocação Genética
15.
Haematologica ; 104(9): 1744-1755, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30792210

RESUMO

The balance between self-renewal and differentiation is crucial to ensure the homeostasis of the hematopoietic system, and is a hallmark of hematopoietic stem cells. However, the underlying molecular pathways, including the role of micro-RNA, are not completely understood. To assess the contribution of micro-RNA, we performed micro-RNA profiling of hematopoietic stem cells and their immediate downstream progeny multi-potent progenitors from wild-type control and Pbx1-conditional knockout mice, whose stem cells display a profound self-renewal defect. Unsupervised hierarchical cluster analysis separated stem cells from multi-potent progenitors, suggesting that micro-RNA might regulate the first transition step in the adult hematopoietic development. Notably, Pbx1-deficient and wild-type cells clustered separately, linking micro-RNAs to self-renewal impairment. Differential expression analysis of micro-RNA in the physiological stem cell-to-multi-potent progenitor transition and in Pbx1-deficient stem cells compared to control stem cells revealed miR-127-3p as the most differentially expressed. Furthermore, miR-127-3p was strongly stem cell-specific, being quickly down-regulated upon differentiation and not re-expressed further downstream in the bone marrow hematopoietic hierarchy. Inhibition of miR-127-3p function in Lineage-negative cells, achieved through a lentiviral-sponge vector, led to severe stem cell depletion, as assessed with serial transplantation assays. miR-127-3p-sponged stem cells displayed accelerated differentiation, which was uncoupled from proliferation, accounting for the observed stem cell reduction. miR-127-3p overexpression in Lineage-negative cells did not alter stem cell pool size, but gave rise to lymphopenia, likely due to lack of miR-127-3p physiological downregulation beyond the stem cell stage. Thus, tight regulation of miR-127-3p is crucial to preserve the self-renewing stem cell pool and homeostasis of the hematopoietic system.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , MicroRNAs/fisiologia , Animais , Linhagem da Célula/genética , Análise por Conglomerados , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Hematopoese , Homeostase , Humanos , Células K562 , Lentivirus/genética , Camundongos , Camundongos Knockout , Estresse Oxidativo , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo
16.
Gene Ther ; 27(10-11): 525-534, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-32704085

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promising potential for opening new avenues in regenerative medicine. However, since the tumorigenic potential of undifferentiated pluripotent stem cells (PSCs) is a major safety concern for clinical transplantation, inducible Caspase-9 (iC9) is under consideration for use as a fail-safe system. Here, we used targeted gene editing to introduce the iC9 system into human iPSCs, and then interrogated the efficiency of inducible apoptosis with normal iPSCs as well as diseased iPSCs derived from patients with acute myeloid leukemia (AML-iPSCs). The iC9 system induced quick and efficient apoptosis to iPSCs in vitro. More importantly, complete eradication of malignant cells without AML recurrence was shown in disease mouse models by using AML-iPSCs. In parallel, it shed light on several limitations of the iC9 system usage. Our results suggest that careful use of the iC9 system will serve as an important countermeasure against posttransplantation adverse events in stem cell transplantation therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Apoptose , Caspase 9/genética , Caspase 9/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo
17.
Cancer Res ; 78(22): 6497-6508, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30262461

RESUMO

Dasatinib is a multi-tyrosine kinase inhibitor approved for treatment of Ph+ acute lymphoblastic leukemia (ALL), but its efficacy is limited by resistance. Recent preclinical studies suggest that dasatinib may be a candidate therapy in additional ALL subtypes including pre-BCR+ ALL. Here we utilized shRNA library screening and global transcriptomic analysis to identify several novel genes and pathways that may enhance dasatinib efficacy or mitigate potential resistance in human pre-BCR+ ALL. Depletion of the transcriptional coactivator CBP increased dasatinib sensitivity by downregulating transcription of the pre-BCR signaling pathway previously associated with dasatinib sensitivity. Acquired resistance was due, in part, to upregulation of alternative pathways including WNT through a mechanism, suggesting transcriptional plasticity. Small molecules that disrupt CBP interactions with the CREB KID domain or ß-catenin showed promising preclinical efficacy in combination with dasatinib. These findings highlight novel modulators of sensitivity to targeted therapies in human pre-BCR+ ALL, which can be reversed by small-molecule inhibitors. They also identify promising therapeutic approaches to ameliorate dasatinib sensitivity and prevent resistance in ALL.Significance: These findings reveal mechanisms that modulate sensitivity to dasatinib and suggest therapeutic strategies to improve the outcome of patients with acute lymphoblastic leukemia.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/22/6497/F1.large.jpg Cancer Res; 78(22); 6497-508. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteína de Ligação a CREB/metabolismo , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Ligação Proteica , Domínios Proteicos , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transcrição Gênica , beta Catenina/genética
18.
Blood Adv ; 2(8): 832-845, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29650777

RESUMO

Genome editing provides a potential approach to model de novo leukemogenesis in primary human hematopoietic stem and progenitor cells (HSPCs) through induction of chromosomal translocations by targeted DNA double-strand breaks. However, very low efficiency of translocations and lack of markers for translocated cells serve as barriers to their characterization and model development. Here, we used transcription activator-like effector nucleases to generate t(9;11) chromosomal translocations encoding MLL-AF9 and reciprocal AF9-MLL fusion products in CD34+ human cord blood cells. Selected cytokine combinations enabled monoclonal outgrowth and immortalization of initially rare translocated cells, which were distinguished by elevated MLL target gene expression, high surface CD9 expression, and increased colony-forming ability. Subsequent transplantation into immune-compromised mice induced myeloid leukemias within 48 weeks, whose pathologic and molecular features extensively overlap with de novo patient MLL-rearranged leukemias. No secondary pathogenic mutations were revealed by targeted exome sequencing and whole genome RNA-sequencing analyses, suggesting the genetic sufficiency of t(9;11) translocation for leukemia development from human HSPCs. Thus, genome editing enables modeling of human acute MLL-rearranged leukemia in vivo, reflecting the genetic simplicity of this disease, and provides an experimental platform for biological and disease-modeling applications.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Translocação Genética , Animais , Carcinogênese , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 9 , Humanos , Leucemia/etiologia , Camundongos , Proteínas de Fusão Oncogênica/genética
19.
Cell Rep ; 23(4): 1166-1177, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694893

RESUMO

Acute lymphoblastic leukemia (ALL) is associated with significant morbidity and mortality, necessitating further improvements in diagnosis and therapy. Targeted therapies directed against chromatin regulators are emerging as promising approaches in preclinical studies and early clinical trials. Here, we demonstrate an oncogenic role for the protein lysine methyltransferase SETDB2 in leukemia pathogenesis. It is overexpressed in pre-BCR+ ALL and required for their maintenance in vitro and in vivo. SETDB2 expression is maintained as a direct target gene of the chimeric transcription factor E2A-PBX1 in a subset of ALL and suppresses expression of the cell-cycle inhibitor CDKN2C through histone H3K9 tri-methylation, thus establishing an oncogenic pathway subordinate to E2A-PBX1 that silences a major tumor suppressor in ALL. In contrast, SETDB2 was relatively dispensable for normal hematopoietic stem and progenitor cell proliferation. SETDB2 knockdown enhances sensitivity to kinase and chromatin inhibitors, providing a mechanistic rationale for targeting SETDB2 therapeutically in ALL.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p18/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Células-Tronco Neoplásicas/patologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
20.
Cancer Res ; 76(23): 6937-6949, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27758892

RESUMO

There is limited understanding of how signaling pathways are altered by oncogenic fusion transcription factors that drive leukemogenesis. To address this, we interrogated activated signaling pathways in a comparative analysis of mouse and human leukemias expressing the fusion protein E2A-PBX1, which is present in 5%-7% of pediatric and 50% of pre-B-cell receptor (preBCR+) acute lymphocytic leukemia (ALL). In this study, we describe remodeling of signaling networks by E2A-PBX1 in pre-B-ALL, which results in hyperactivation of the key oncogenic effector enzyme PLCγ2. Depletion of PLCγ2 reduced proliferation of mouse and human ALLs, including E2A-PBX1 leukemias, and increased disease-free survival after secondary transplantation. Mechanistically, E2A-PBX1 bound promoter regulatory regions and activated the transcription of its key target genes ZAP70, SYK, and LCK, which encode kinases upstream of PLCγ2. Depletion of the respective upstream kinases decreased cell proliferation and phosphorylated levels of PLCγ2 (pPLCγ2). Pairwise silencing of ZAP70, SYK, or LCK showed additive effects on cell growth inhibition, providing a rationale for combination therapy with inhibitors of these kinases. Accordingly, inhibitors such as the SRC family kinase (SFK) inhibitor dasatinib reduced pPLCγ2 and inhibited proliferation of human and mouse preBCR+/E2A-PBX1+ leukemias in vitro and in vivo Furthermore, combining small-molecule inhibition of SYK, LCK, and SFK showed synergistic interactions and preclinical efficacy in the same setting. Our results show how the oncogenic fusion protein E2A-PBX1 perturbs signaling pathways upstream of PLCγ2 and renders leukemias amenable to targeted therapeutic inhibition. Cancer Res; 76(23); 6937-49. ©2016 AACR.


Assuntos
Linfócitos B/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...