Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
4.
J Am Chem Soc ; 126(19): 6185-92, 2004 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15137784

RESUMO

The validity of Marcus theory for outer-sphere heterogeneous electron transfer for the electro-oxidation of a range of anthracene derivatives in alkyl cyanide solvents is investigated. The precision measurement of these fast electron transfers (k(0) >or= 1 cm s(-1)) is achieved by use of the high-speed channel electrode and, where necessary, fast-scan cyclic voltammetry. First, the solvent effect on the rate of electron transfer is studied by considering the first oxidation wave of 9,10-diphenylanthracene in the alkyl cyanide solvents: acetonitrile, propionitrile, butyronitrile, and valeronitrile. Second, the variation of k(0) for a series of substituted anthracenes is investigated by analyzing the voltammetric response of the one-electron oxidations of 9-phenylanthracene, 9,10-dichloroanthracene, 9-chloroanthracene, 9,10-dicyanoanthracene, 9-cyanoanthracene, 9-nitroanthracene, 9,10-diphenylanthracene, and anthracene in acetonitrile. It is shown that the rate of electron transfer of a single compound in different alkyl cyanides is determined by the longitudinal dielectric relaxation properties of the solvent, while differences in rate between the substituted anthracenes in acetonitrile can be quantitatively rationalized by considering their relative hydrodynamic radii. This makes possible the accurate prediction of electron-transfer rates for a molecule by interpolation of rate constants known for related molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA