Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 11(9): 3676-80, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21838252

RESUMO

Bundles of filamentous actin are dominant cytoskeletal structures, which play a crucial role in various cellular processes. As yet quantifying the fundamental interaction between two individual actin filaments forming the smallest possible bundle has not been realized. Applying holographic optical tweezers integrated with a microfluidic platform, we were able to measure the forces between two actin filaments during bundle formation. Quantitative analysis yields forces up to 0.2 pN depending on the concentration of bundling agents.


Assuntos
Actinas/química , Biofísica/métodos , Trifosfato de Adenosina/química , Animais , Citoesqueleto/metabolismo , Eletrólitos , Humanos , Íons , Microfluídica , Nematoides , Pinças Ópticas , Óptica e Fotônica , Reprodutibilidade dos Testes , Estresse Mecânico
2.
Chemphyschem ; 10(16): 2777-86, 2009 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-19821475

RESUMO

Since its first production from muscle tissue more than 65 years ago, our knowledge about actin has come a long way. While at the beginning it was identified as a muscle protein, nowadays actin is considered as one of the most important components of the cytoskeleton, playing a crucial role in cell motility, adhesion, morphology and intracellular transport processes. In vitro models have been constructed for about 20 years to gain better insight into the chemophysical and biomechanical properties of actin networks by being able to reduce and tune its complexity. The complexity of these models ranges from single actin filaments (F-actin) in interaction with actin-associated molecules and proteins, F-actin network gels to F-actin loaded vesicles to freely suspended F-actin networks in microfluidic environments. This review summarizes the development of F-actin network models and highlights their applicability towards step-by-step construction of complex cortex mimicking systems.


Assuntos
Actinas/fisiologia , Citoesqueleto de Actina/fisiologia , Materiais Biomiméticos , Adesão Celular , Movimento Celular , Citoesqueleto , Pinças Ópticas
3.
Lab Chip ; 9(5): 661-8, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19224015

RESUMO

Holographic optical tweezers (HOT) are a versatile technology, with which complex arrays and movements of optical traps can be realized to manipulate multiple microparticles in parallel and to measure the forces affecting them in the piconewton range. We report on the combination of HOT with a fluorescence microscope and a stop-flow, multi-channel microfluidic device. The integration of a high-speed camera into the setup allows for the calibration of all the traps simultaneously both using Boltzmann statistics or the power spectrum density of the particle diffusion within the optical traps. This setup permits complete spatial, chemical and visual control of the microenvironment applicable to probing chemo-mechanical properties of cellular or subcellular structures. As an example we constructed a biomimetic, quasi-two-dimensional actin network on an array of trapped polystyrene microspheres inside the microfluidic chamber. During crosslinking of the actin filaments by Mg(2+) ions, we observe the build up of mechanical tension throughout the actin network. Thus, we demonstrate how our integrated HOT-microfluidics platform can be used as a reconfigurable force sensor array with piconewton resolution to investigate chemo-mechanical processes.


Assuntos
Holografia/instrumentação , Microfluídica/instrumentação , Pinças Ópticas , Actinas/química , Actinas/fisiologia , Algoritmos , Materiais Biomiméticos , Calibragem , Magnésio/química , Microscopia de Fluorescência , Nanopartículas , Nanotecnologia , Propriedades de Superfície
4.
Proc Natl Acad Sci U S A ; 103(23): 8680-5, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16731631

RESUMO

Myosin-V is a linear molecular motor that hydrolyzes ATP to move processively toward the plus end of actin filaments. Motion of this motor under low forces has been studied recently in various single-molecule assays. In this paper we show that myosin-V reacts to high forces as a mechanical ratchet. High backward loads can induce rapid and processive backward steps along the actin filament. This motion is completely independent of ATP binding and hydrolysis. In contrast, forward forces cannot induce ATP-independent forward steps. We can explain this pronounced mechanical asymmetry by a model in which the strength of actin binding of a motor head is modulated by the lever arm conformation. Knowledge of the complete force-velocity dependence of molecular motors is important to understand their function in the cellular environment.


Assuntos
Miosina Tipo V/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Galinhas , Cinética , Modelos Biológicos , Miosina Tipo V/química , Coelhos
5.
Biophys J ; 88(6): 4402-10, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15764664

RESUMO

Myosin-V is a processive two-headed actin-based motor protein involved in many intracellular transport processes. A key question for understanding myosin-V function and the communication between its two heads is its behavior under load. Since in vivo myosin-V colocalizes with other much stronger motors like kinesins, its behavior under superstall forces is especially relevant. We used optical tweezers with a long-range force feedback to study myosin-V motion under controlled external forward and backward loads over its full run length. We find the mean step size remains constant at approximately 36 nm over a wide range of forces from 5 pN forward to 1.5 pN backward load. We also find two force-dependent transitions in the chemomechanical cycle. The slower ADP-release is rate limiting at low loads and depends only weakly on force. The faster rate depends more strongly on force. The stronger force dependence suggests this rate represents the diffusive search of the leading head for its binding site. In contrast to kinesin motors, myosin-V's run length is essentially independent of force between 5 pN of forward to 1.5 pN of backward load. At superstall forces of 5 pN, we observe continuous backward stepping of myosin-V, indicating that a force-driven reversal of the power stroke is possible.


Assuntos
Miosina Tipo V/química , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Biofísica , Galinhas , Técnicas In Vitro , Cinética , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Miosina Tipo V/metabolismo , Óptica e Fotônica/instrumentação
6.
Appl Opt ; 41(33): 7000-5, 2002 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-12463244

RESUMO

We present a novel approach for the generation of higly frequency-stable, widely tunable, single-frequency cw UV light that is suitable for high-resolution spectroscopy. Sum-frequency generation (SFG) of two solid-state sources with a single cavity resonant for both fundamental waves is employed. Using a highly stable, narrow-linewidth frequency-doubled cw Nd:YAG laser as a master laser and slaving to it the SFG cavity and the other fundamental wave from a Ti:sapphire laser, we generate UV radiation of 33-mW output power around 313 nm. Alternatively, we use a diode laser instead of the Ti:sapphire laser and produce an output power of 2.1 mW at 313 nm. With both setups we obtain a continuous tunability of >15 GHz, short-term frequency fluctuations in the submegahertz range, a long-term frequency drift below 100 MHz/h, and stable operation for several hours. The theory of optimized doubly resonant SFG is also given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...