Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cardiovasc Res ; 120(3): 318-328, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38381113

RESUMO

AIMS: The adaptive immune response plays an important role in atherosclerosis. In response to a high-fat/high-cholesterol (HF/HC) diet, marginal zone B (MZB) cells activate an atheroprotective programme by regulating the differentiation and accumulation of 'poorly differentiated' T follicular helper (Tfh) cells. On the other hand, Tfh cells activate the germinal centre response, which promotes atherosclerosis through the production of class-switched high-affinity antibodies. We therefore investigated the direct role of Tfh cells and the role of IL18 in Tfh differentiation in atherosclerosis. METHODS AND RESULTS: We generated atherosclerotic mouse models with selective genetic deletion of Tfh cells, MZB cells, or IL18 signalling in Tfh cells. Surprisingly, mice lacking Tfh cells had increased atherosclerosis. Lack of Tfh not only reduced class-switched IgG antibodies against oxidation-specific epitopes (OSEs) but also reduced atheroprotective natural IgM-type anti-phosphorylcholine (PC) antibodies, despite no alteration of natural B1 cells. Moreover, the absence of Tfh cells was associated with an accumulation of MZB cells with substantially reduced ability to secrete antibodies. In the same manner, MZB cell deficiency in Ldlr-/- mice was associated with a significant decrease in atheroprotective IgM antibodies, including natural anti-PC IgM antibodies. In humans, we found a positive correlation between circulating MZB-like cells and anti-OSE IgM antibodies. Finally, we identified an important role for IL18 signalling in HF/HC diet-induced Tfh. CONCLUSION: Our findings reveal a previously unsuspected role of MZB cells in regulating atheroprotective 'natural' IgM antibody production in a Tfh-dependent manner, which could have important pathophysiological and therapeutic implications.


Assuntos
Aterosclerose , Interleucina-18 , Humanos , Camundongos , Animais , Imunoglobulina M , Linfócitos B , Aterosclerose/genética , Aterosclerose/prevenção & controle , Colesterol , Linfócitos T Auxiliares-Indutores
2.
PLoS One ; 18(12): e0295408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055674

RESUMO

AIMS: IgE type immunoglobulins and their specific effector cells, mast cells (MCs), are associated with abdominal aortic aneurysm (AAA) progression. In parallel, immunoglobulin-producing B cells, organised in tertiary lymphoid organs (TLOs) within the aortic wall, have also been linked to aneurysmal progression. We aimed at investigating the potential role and mechanism linking local MCs, TLO B cells, and IgE production in aneurysmal progression. METHODS AND RESULTS: Through histological assays conducted on human surgical samples from AAA patients, we uncovered that activated MCs were enriched at sites of unhealed haematomas, due to subclinical aortic wall fissuring, in close proximity to adventitial IgE+ TLO B cells. Remarkably, in vitro the IgEs deriving from these samples enhanced MC production of IL-4, a cytokine which favors IgE class-switching and production by B cells. Finally, the role of MCs in aneurysmal progression was further analysed in vivo in ApoE-/- mice subjected to angiotensin II infusion aneurysm model, through MC-specific depletion after the establishment of dissecting aneurysms. MC-specific depletion improved intramural haematoma healing and reduced aneurysmal progression. CONCLUSIONS: Our data suggest that MC located close to aortic wall fissures are activated by adventitial TLO B cell-produced IgEs and participate to their own activation by providing support for further IgE synthesis through IL-4 production. By preventing prompt repair of aortic subclinical fissures, such a runaway MC activation loop could precipitate aneurysmal progression, suggesting that MC-targeting treatments may represent an interesting adjunctive therapy for reducing AAA progression.


Assuntos
Aneurisma da Aorta Abdominal , Mastócitos , Humanos , Camundongos , Animais , Mastócitos/metabolismo , Interleucina-4/metabolismo , Camundongos Knockout para ApoE , Aneurisma da Aorta Abdominal/patologia , Imunoglobulina E/metabolismo , Modelos Animais de Doenças , Aorta Abdominal/patologia , Angiotensina II/metabolismo , Camundongos Endogâmicos C57BL
3.
Elife ; 122023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37549051

RESUMO

Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed ß2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.


Assuntos
Neutrófilos , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Animais , Camundongos , Antígenos CD18/metabolismo , Adesão Celular/fisiologia , Inflamação/metabolismo , Integrinas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteômica , Transdução de Sinais , Movimento Celular
4.
J Am Soc Nephrol ; 34(7): 1207-1221, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022108

RESUMO

SIGNIFICANCE STATEMENT: Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND: Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS: Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS: Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF ß -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION: TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.


Assuntos
Glomerulonefrite , Insuficiência Renal Crônica , Trombose , Humanos , Camundongos , Animais , Trombopoetina/metabolismo , Trombopoetina/farmacologia , Receptores de Trombopoetina , Inflamação , Tromboinflamação , Hematopoese/fisiologia , Anticorpos/farmacologia , Rim/metabolismo , Insuficiência Renal Crônica/etiologia , Fator de Crescimento Transformador beta/farmacologia
6.
Front Psychol ; 13: 883331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800952

RESUMO

Introduction: Differences in sensory processing were linked to a diagnosis of autism spectrum disorder (ASD) before its inclusion as a core characteristic in the revised DSM-V. Yet, research focused on sensory processing and meaningful participation of children and youth with ASD remains relatively scarce. Although refinement of the International Classification of Functioning and Disability (ICF) relies on first-person accounts, longitudinal studies that foreground sensory experiences and its impact on involvement in a life situation from first-person perspectives are largely missing from this body of research. Objectives: In this sub-study, we drew from a longitudinal participatory research project consisting of two separately funded studies with children and youth with ASD and their families between 2014 and 2021. The participatory project used photovoice (PV) methods to identify the primary concerns related to socio-spatial exclusion (PV-1) and the action steps needed to redress them (PV-2). The objective of this sub-study was to understand what really mattered to children with autism, their parents, autistic youth and an adult mentor to consider how their experiential knowledge could deepen understanding of meaningful participation. Materials and Methods: We used an overarching narrative phenomenological and aesthetic theoretical framework to focus data analysis on the bodily sensing experiences related to significant moments or events, followed by an inductive thematic analysis of what mattered about those moments. Results: The topical areas of concern that emerged from analyses were: (1) the relationship between sensory experiences and mental health (motion madness); (2) the indivisibility or layering of sensory and social experiences (squishing and squeezing); (3) the impact when "tricks" to stay involved are categorically misunderstood (When you don't respond in the correct way), and (4) how care and consideration of others can lead to innovative solutions for inclusion (I can't be the only one). Listening to the bodily-sensing experiences of children with ASD, autistic youth and adults, and their families in their own terms has implications for remapping the ICF and envisioning sensory curb-cuts to access, initiate and sustain occupational participation for all.

7.
Nature ; 597(7874): 92-96, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433968

RESUMO

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Proteoglicanas de Heparan Sulfato/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/deficiência
8.
Nature ; 594(7864): 560-565, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040253

RESUMO

Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Microtúbulos/química , Infarto do Miocárdio/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Tirosina/química , Proteínas Angiogênicas , Animais , Carboxipeptidases , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Miócitos Cardíacos , Volume Sistólico , Função Ventricular Esquerda
10.
Angiology ; 72(6): 539-549, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32851875

RESUMO

Rupture of splenic artery aneurysms (SAAs) is associated with a high mortality rate. The aim of this study was to identify the features of SAAs. Tissue sections from SAAs were compared to nonaneurysmal splenic arteries using various stains. The presence of intraluminal thrombus (ILT), vascular smooth muscle cells (VSMCs), cluster of differentiation (CD)-68+ phagocytes, myeloperoxidase+ neutrophils, CD3+, and CD20+ adaptive immune cells were studied using immunofluorescence microscopy. Analysis of SAAs revealed the presence of atherosclerotic lesions, calcifications, and ILT. Splenic artery aneurysms were characterized by a profound vascular remodeling with a dramatic loss of VSMCs, elastin degradation, adventitial fibrosis associated with enhanced apoptosis, and increased matrix metalloproteinase 9 expression. We observed an infiltration of immune cells comprising macrophages, neutrophils, T, and B cells. The T and B cells were found in the adventitial layer of SAAs, but their organization into tertiary lymphoid organs was halted. We failed to detect germinal centers even in the most organized T/B cell follicles and these lymphoid clusters lacked lymphoid stromal cells. This detailed histopathological characterization of the vascular remodeling during SAA showed that lymphoid neogenesis was incomplete, suggesting that critical mediators of their development must be missing.


Assuntos
Aneurisma/imunologia , Aneurisma/patologia , Leucócitos/imunologia , Macrófagos/imunologia , Artéria Esplênica/imunologia , Artéria Esplênica/patologia , Remodelação Vascular , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneurisma/metabolismo , Aneurisma/cirurgia , Apoptose , Linfócitos B/imunologia , Biomarcadores/análise , Feminino , Fibrose , Humanos , Macrófagos/química , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Estudos Retrospectivos , Artéria Esplênica/química , Artéria Esplênica/cirurgia , Linfócitos T/imunologia
11.
J Neurochem ; 157(3): 561-573, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33382098

RESUMO

Hepatic encephalopathy (HE) is a debilitating neurological complication of cirrhosis. By definition, HE is considered a reversible disorder, and therefore HE should resolve following liver transplantation (LT). However, persisting neurological complications are observed in as many as 47% of LT recipients. LT is an invasive surgical procedure accompanied by various perioperative factors such as blood loss and hypotension which could influence outcomes post-LT. We hypothesize that minimal HE (MHE) renders the brain frail and susceptible to hypotension-induced neuronal cell death. Six-week bile duct-ligated (BDL) rats with MHE and respective SHAM-controls were used. Several degrees of hypotension (mean arterial pressure of 30, 60 and 90 mm Hg) were induced via blood withdrawal from the femoral artery and maintained for 120 min. Brains were collected for neuronal cell count and apoptotic analysis. In a separate group, BDL rats were treated for MHE with the ammonia-lowering strategy ornithine phenylacetate (OP; MNK-6105), administered orally (1 g/kg) for 3 weeks before induction of hypotension. Hypotension 30 and 60 mm Hg (not 90 mm Hg) significantly decreased neuronal marker expression (NeuN) and cresyl violet staining in the frontal cortex compared to respective hypotensive SHAM-operated controls as well as non-hypotensive BDL rats. Neuronal degeneration was associated with an increase in cleaved caspase-3, suggesting the mechanism of cell death was apoptotic. OP treatment attenuated hyperammonaemia, improved anxiety and activity, and protected the brain against hypotension-induced neuronal cell death. Our findings demonstrate that rats with chronic liver disease and MHE are more susceptible to hypotension-induced neuronal cell degeneration. This highlights MHE at the time of LT is a risk factor for poor neurological outcome post-transplant and that treating for MHE pre-LT might reduce this risk.


Assuntos
Amônia/metabolismo , Ductos Biliares , Hipotensão/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Amônia/sangue , Animais , Antígenos Nucleares/metabolismo , Ansiedade/psicologia , Apoptose , Comportamento Animal , Caspase 3/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Encefalopatia Hepática/patologia , Hiperamonemia , Ligadura , Masculino , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/psicologia , Ornitina/análogos & derivados , Ornitina/uso terapêutico , Ratos , Ratos Sprague-Dawley
12.
Sci Rep ; 10(1): 20825, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257753

RESUMO

Obesity is among the leading causes of elevated cardiovascular disease mortality and morbidity. Adipose tissue dysfunction, insulin resistance and inflammation are recognized as important risk factors for the development of cardiovascular disorders in obesity. Hypoxia appears to be a key factor in adipose tissue dysfunction affecting not only adipocytes but also immune cell function. Here we examined the effect of hypoxia-induced transcription factor HIF1α activation on classical dendritic cell (cDCs) function during obesity. We found that deletion of Hif1α on cDCs results in enhanced adipose-tissue inflammation and atherosclerotic plaque formation in a mouse model of obesity. This effect is mediated by HIF1α-mediated increased lipid synthesis, accumulation of lipid droplets and alter synthesis of lipid mediators. Our findings demonstrate that HIF1α activation in cDCs is necessary to control vessel wall inflammation.


Assuntos
Células Dendríticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Obesidade/metabolismo , Animais , Aterosclerose/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Immunity ; 52(5): 782-793.e5, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32272082

RESUMO

Splenic red pulp macrophages (RPMs) contribute to erythrocyte homeostasis and are required for iron recycling. Heme induces the expression of SPIC transcription factor in monocyte-derived macrophages and promotes their differentiation into RPM precursors, pre-RPMs. However, the requirements for differentiation into mature RPMs remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated with erythrocytes and co-cooperated with heme to promote the generation of mature RPMs through activation of the MyD88 adaptor protein and ERK1/2 kinases downstream of the IL-33 receptor, IL1RL1. IL-33- and IL1RL1-deficient mice showed defective iron recycling and increased splenic iron deposition. Gene expression and chromatin accessibility studies revealed a role for GATA transcription factors downstream of IL-33 signaling during the development of pre-RPMs that retained full potential to differentiate into RPMs. Thus, IL-33 instructs the development of RPMs as a response to physiological erythrocyte damage with important implications to iron recycling and iron homeostasis.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Ferro/metabolismo , Macrófagos/imunologia , Transdução de Sinais/imunologia , Baço/metabolismo , Animais , Eritrócitos/imunologia , Eritrócitos/metabolismo , Heme/imunologia , Heme/metabolismo , Homeostase/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Baço/citologia
14.
Circ Res ; 125(11): 1019-1034, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31610723

RESUMO

RATIONALE: Atherosclerosis is a chronic inflammatory disease. Recent studies have shown that dysfunctional autophagy in endothelial cells, smooth muscle cells, and macrophages, plays a detrimental role during atherogenesis, leading to the suggestion that autophagy-stimulating approaches may provide benefit. OBJECTIVE: Dendritic cells (DCs) are at the crossroad of innate and adaptive immune responses and profoundly modulate the development of atherosclerosis. Intriguingly, the role of autophagy in DC function during atherosclerosis and how the autophagy process would impact disease development has not been addressed. METHODS AND RESULTS: Here, we show that the autophagic flux in atherosclerosis-susceptible Ldlr-/- (low-density lipoprotein receptor-deficient) mice is substantially higher in splenic and aortic DCs compared with macrophages and is further activated under hypercholesterolemic conditions. RNA sequencing and functional studies on selective cell populations reveal that disruption of autophagy through deletion of Atg16l1 differentially affects the biology and functions of DC subsets in Ldlr-/- mice under high-fat diet. Atg16l1 deficient CD11b+ DCs develop a TGF (transforming growth factor)-ß-dependent tolerogenic phenotype and promote the expansion of regulatory T cells, whereas no such effects are seen with Atg16l1 deficient CD8α+ DCs. Atg16l1 deletion in DCs (all CD11c-expressing cells) expands aortic regulatory T cells in vivo, limits the accumulation of T helper cells type 1, and reduces the development of atherosclerosis in Ldlr-/- mice. In contrast, no such effects are seen when Atg16l1 is deleted selectively in conventional CD8α+ DCs and CD103+ DCs. Total T-cell or selective regulatory T-cell depletion abrogates the atheroprotective effect of Atg16l1 deficient DCs. CONCLUSIONS: In contrast to its proatherogenic role in macrophages, autophagy disruption in DCs induces a counter-regulatory response that maintains immune homeostasis in Ldlr-/- mice under high-fat diet and limits atherogenesis. Selective modulation of autophagy in DCs could constitute an interesting therapeutic target in atherosclerosis.


Assuntos
Aorta/imunologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Autofagia , Antígeno CD11b/imunologia , Comunicação Celular , Proliferação de Células , Células Dendríticas/imunologia , Ativação Linfocitária , Linfócitos T Reguladores/imunologia , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transplante de Medula Óssea , Antígenos CD11/genética , Antígenos CD11/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 39(8): 1645-1651, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167564

RESUMO

OBJECTIVE: MARK4 (microtubule affinity-regulating kinase 4) regulates NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome activation. The aim of the study is to examine the role of MARK4 in hematopoietic cells during atherosclerosis. METHODS AND RESULTS: We show increased MARK4 expression in human atherosclerotic lesions compared with adjacent areas. MARK4 is coexpressed with NLRP3, and they colocalize in areas enriched in CD68-positive but α-SMA (α-smooth muscle actin)-negative cells. Expression of MARK4 and NLRP3 in the atherosclerotic lesions is associated with the production of active IL (interleukin)-1ß and IL-18. To directly assess the role of hematopoietic MARK4 in NLRP3 inflammasome activation and atherosclerotic plaque formation, Ldlr (low-density lipoprotein receptor)-deficient mice were lethally irradiated and reconstituted with either wild-type or Mark4-deficient bone marrow cells, and were subsequently fed a high-fat diet and cholesterol diet for 9 weeks. Mark4 deficiency in bone marrow cells led to a significant reduction of lesion size, together with decreased circulating levels of IL-18 and IFN-γ (interferon-γ). Furthermore, Mark4 deficiency in primary murine bone marrow-derived macrophages prevented cholesterol crystal-induced NLRP3 inflammasome activation, as revealed by reduced caspase-1 activity together with reduced production of IL-1ß and IL-18. CONCLUSIONS: MARK4-dependent NLRP3 inflammasome activation in the hematopoietic cells regulates the development of atherosclerosis.


Assuntos
Aterosclerose/etiologia , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Humanos , Interleucina-18/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de LDL/fisiologia
16.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30943775

RESUMO

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Assuntos
Aneurisma Aórtico/patologia , Dissecção Aórtica/patologia , Autofagia , Plasticidade Celular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Adulto , Idoso , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/metabolismo , Angiotensina II , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
17.
Biochimie ; 162: 1-7, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30922869

RESUMO

OBJECTIVES: The potential implication of micro-RNAs (miRs) in the negative association between diabetes and abdominal aortic aneurysm (AAA) has so far never been addressed. The aim of this study was to compare miR expression between diabetic and non-diabetic patients with AAA. METHODS: Ten diabetic patients were prospectively included and compared to 10 age- and sex-matched non-diabetic patients with infrarenal AAA. A profiling analysis of 752 human miRs was performed from peripheral blood mononuclear cells (PBMCs) using miRCURY LNA Universal RT microRNA PCR (Exiqon- Qiagen®). miR that showed significant differential expression (P < 0.05) were selected and further analyzed in the entire cohort in sera, plasma and aneurysmal aortic tissues. RESULTS: Four miRs were significantly differentially expressed in PBMCs of diabetic patients compared to non-diabetics: 3 were upregulated (miR-144-3p, 20a-5p and 188-3p) and 1 downregulated (miR-548k). miR-144-3p and miR-548k were also increased in aneurysmal tissue and miR-20a-5p was increased in serum. The expression of miR-20a-5p in PBMCs was correlated with fructosamine concentration (r = 0.62, p = 0.006). CONCLUSIONS: Even if further studies are required to determine their direct role in AAA, these miRs could represent interesting new targets.


Assuntos
Aneurisma da Aorta Abdominal/complicações , Aneurisma da Aorta Abdominal/metabolismo , Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/etiologia , MicroRNAs/metabolismo , Idoso , Aneurisma da Aorta Abdominal/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade
18.
J Vasc Surg ; 70(2): 588-598.e2, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30792060

RESUMO

OBJECTIVE: Macrophages play a critical role in the initiation and progression of abdominal aortic aneurysm (AAA) and are classically distinguished into M1 "proinflammatory" and M2 "anti-inflammatory" macrophages. Topical application of elastase associated with transforming growth factor ß (TGF-ß) systemic neutralization reproduces the main pathologic features of human AAA, offering a new model to investigate their role. The aim of this study was to investigate whether macrophages contribute to the expression of canonical M1/M2 markers in the aorta in the AAA model induced by elastase and systemic blockade of TGF-ß and whether blocking of TGF-ß activity affects macrophage phenotype and the expression of the M2 marker arginase 1 (ARG1). METHODS: C57Bl/6J male mice (6-8 weeks old) were randomly assigned to three experimental groups: mice that had local application of heat-inactivated elastase or elastase and mice that had elastase application and received injection of anti-TGF-ß (elastase + anti-TGF-ß group). Monocyte-macrophage depletion was achieved in the elastase + anti-TGF-ß group using liposome clodronate. Macrophage phenotype was characterized by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. Human infrarenal AAA tissues (n = 10) were obtained to analyze ARG1 expression. RESULTS: Analysis of gene expression in the infrarenal aortic wall revealed that after 14 days, no significant difference for the expression of CCL2, NOS2, and Ym1/2 was observed in the elastase group compared with the elastase + anti-TGF-ß group, whereas the expression of ARG1, interleukin (IL) 1ß, and IL-6 was significantly increased. Macrophage depletion in the elastase + anti-TGF-ß group led to a significant decrease of IL-1ß, IL-6, ARG1, and Ym1/2 gene expression. Immunofluorescent staining confirmed that TGF-ß neutralization significantly enhanced ARG1 protein expression in the aneurysmal tissue. Flow cytometry analysis revealed an increase of macrophages expressing ARG1 in the aorta of mice treated with elastase + anti-TGF-ß compared with the elastase group, and their proportion increased with aneurysmal dilation. In humans, ARG1 protein expression was increased in aneurysmal tissues compared with controls, and positive cells were mainly found in the adventitia. CONCLUSIONS: TGF-ß neutralization finely tunes macrophage phenotype in elastase-induced AAA and leads to an increase in ARG1 gene and protein expression in the aortic wall. Even if further studies are required to elucidate its role in AAA development, ARG1 could represent a new prognostic or therapeutic target in aneurysmal disease.


Assuntos
Anticorpos Neutralizantes , Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/enzimologia , Arginase/metabolismo , Macrófagos/enzimologia , Elastase Pancreática , Fator de Crescimento Transformador beta/metabolismo , Animais , Aorta Abdominal/imunologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/imunologia , Regulação para Cima
19.
Circ Genom Precis Med ; 12(2): e002413, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30657332

RESUMO

BACKGROUND: The Asp358Ala variant (rs2228145; A>C) in the IL (interleukin)-6 receptor ( IL6R) gene has been implicated in the development of abdominal aortic aneurysms (AAAs), but its effect on AAA growth over time is not known. We aimed to investigate the clinical association between the IL6R-Asp358Ala variant and AAA growth and to assess the effect of blocking the IL-6 signaling pathway in mouse models of aortic aneurysm rupture or dissection. METHODS: Using data from 2863 participants with AAA from 9 prospective cohorts, age- and sex-adjusted mixed-effects linear regression models were used to estimate the association between the IL6R-Asp358Ala variant and annual change in AAA diameter (mm/y). In a series of complementary randomized trials in mice, the effect of blocking the IL-6 signaling pathways was assessed on plasma biomarkers, systolic blood pressure, aneurysm diameter, and time to aortic rupture and death. RESULTS: After adjusting for age and sex, baseline aneurysm size was 0.55 mm (95% CI, 0.13-0.98 mm) smaller per copy of the minor allele [C] of the Asp358Ala variant. Change in AAA growth was -0.06 mm per year (-0.18 to 0.06) per copy of the minor allele; a result that was not statistically significant. Although all available worldwide data were used, the genetic analyses were not powered for an effect size as small as that observed. In 2 mouse models of AAA, selective blockage of the IL-6 trans-signaling pathway, but not combined blockage of both, the classical and trans-signaling pathways, was associated with improved survival ( P<0.05). CONCLUSIONS: Our proof-of-principle data are compatible with the concept that IL-6 trans-signaling is relevant to AAA growth, encouraging larger-scale evaluation of this hypothesis.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Receptores de Interleucina-6/metabolismo , Alelos , Angiotensina II/toxicidade , Animais , Anticorpos/imunologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/mortalidade , Biomarcadores/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-6/sangue , Modelos Lineares , Camundongos , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia , Transdução de Sinais , Taxa de Sobrevida , Fator de Crescimento Transformador beta/imunologia
20.
Cardiovasc Res ; 114(13): 1702-1713, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052821

RESUMO

Aortic aneurysm is a life-threatening disease due to the risk of aortic rupture. The only curative treatment available relies on surgical approaches; drug-based therapies are lacking, highlighting an unmet need for clinical practice. Abdominal aortic aneurysm (AAA) is frequently associated with atherosclerosis and cardiovascular risk factors including male sex, age, smoking, hypertension, and dyslipidaemia. Thoracic aortic aneurysm (TAA) is more often linked to genetic disorders of the extracellular matrix and the contractile apparatus but also share similar cardiovascular risk factors. Intriguingly, a large body of evidence points to an inverse association between diabetes and both AAA and TAA. A better understanding of the mechanisms underlying the negative association between diabetes and aortic aneurysm could help the development of innovative diagnostic and therapeutic approaches to tackle the disease. Here, we summarize current knowledge on the relationship between glycaemic parameters, diabetes, and the development of aortic aneurysm. Cellular and molecular pathways that underlie the protective effect of diabetes itself and its treatment are reviewed and discussed, along with their potential implications for clinical translation.


Assuntos
Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Torácica/epidemiologia , Glicemia/metabolismo , Diabetes Mellitus/epidemiologia , Remodelação Vascular , Animais , Aneurisma da Aorta Abdominal/sangue , Aneurisma da Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Torácica/sangue , Aneurisma da Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/prevenção & controle , Biomarcadores/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Dilatação Patológica , Modelos Animais de Doenças , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Prognóstico , Fatores de Proteção , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...