Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630879

RESUMO

Metal-organic frameworks (MOFs) are highly versatile materials. Here, two novel MOFs, branded as IEF-23 and IEF-24 and based on an antibacterial tricarboxylate linker and zinc or copper cations, and holding antibacterial properties, are presented. The materials were synthesized by the solvothermal route and fully characterized. The antibacterial activity of IEF-23 and IEF-24 was investigated against Staphylococcus epidermidis and Escherichia coli via the agar diffusion method. These bacteria are some of the most broadly propagated pathogens and are more prone to the development of antibacterial resistance. As such, they represent an archetype to evaluate the efficiency of novel antibacterial treatments. MOFs were active against both strains, exhibiting higher activity against Staphylococcus epidermidis. Thus, the potential of the developed MOFs as antibacterial agents was proved.

2.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139634

RESUMO

BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.

3.
Pharmaceutics ; 14(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35745711

RESUMO

A series of bionanocomposites composed of shark gelatin hydrogels and PLA nanoparticles featuring different nanostructures were designed to generate multifunctional drug delivery systems with tailored release rates required for personalized treatment approaches. The global conception of the systems was considered from the desired customization of the drug release while featuring the viscoelastic properties needed for their ease of storage and posterior local administration as well as their biocompatibility and cell growth capability for the successful administration at the biomolecular level. The hydrogel matrix offers the support to develop a direct thermal method to convert the typical kinetic trapped nanostructures afforded by the formulation method whilst avoiding the detrimental nanoparticle agglomeration that diminishes their therapeutic effect. The nanoparticles generated were successfully formulated with two different antitumoral compounds (doxorubicin and dasatinib) possessing different structures to prove the loading versatility of the drug delivery system. The bionanocomposites were characterized by several techniques (SEM, DLS, RAMAN, DSC, SAXS/WAXS and rheology) as well as their reversible sol-gel transition upon thermal treatment that occurs during the drug delivery system preparation and the thermal annealing step. In addition, the local applicability of the drug delivery system was assessed by the so-called "syringe test" to validate both the storage capability and its flow properties at simulated physiological conditions. Finally, the drug release profiles of the doxorubicin from both the PLA nanoparticles or the bionanocomposites were analyzed and correlated to the nanostructure of the drug delivery system.

4.
Front Microbiol ; 12: 754664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745059

RESUMO

Hepatitis C virus (HCV) is a single-stranded RNA virus of positive polarity [ssRNA(+)] that replicates its genome through the activity of one of its proteins, called NS5B. This viral protein is responsible for copying the positive-polarity RNA genome into a negative-polarity RNA strand, which will be the template for new positive-polarity RNA genomes. The NS5B protein is phosphorylated by cellular kinases, including Akt. In this work, we have identified several amino acids of NS5B that are phosphorylated by Akt, with positions S27, T53, T267, and S282 giving the most robust results. Site-directed mutagenesis of these residues to mimic (Glu mutants) or prevent (Ala mutants) their phosphorylation resulted in a reduced NS5B in vitro RNA polymerase activity, except for the T267E mutant, the only non-conserved position of all those that are phosphorylated. In addition, in vitro transcribed RNAs derived from HCV complete infectious clones carrying mutations T53E/A and S282E/A were transfected in Huh-7.5 permissive cells, and supernatant viral titers were measured at 6 and 15 days post-transfection. No virus was rescued from the mutants except for T53A at 15 days post-transfection whose viral titer was statistically lower as compared to the wild type. Therefore, phosphorylation of NS5B by cellular kinases is a mechanism of viral polymerase inactivation. Whether this inactivation is a consequence of interaction with cellular kinases or a way to generate inactive NS5B that may have other functions are questions that need further experimental work.

5.
J Nanobiotechnology ; 19(1): 267, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488783

RESUMO

BACKGROUND: Sarcomas comprise a group of aggressive malignancies with very little treatment options beyond standard chemotherapy. Reposition of approved drugs represents an attractive approach to identify effective therapeutic compounds. One example is mithramycin (MTM), a natural antibiotic which has demonstrated a strong antitumour activity in several tumour types, including sarcomas. However, its widespread use in the clinic was limited by its poor toxicity profile. RESULTS: In order to improve the therapeutic index of MTM, we have loaded MTM into newly developed nanocarrier formulations. First, polylactide (PLA) polymeric nanoparticles (NPs) were generated by nanoprecipitation. Also, liposomes (LIP) were prepared by ethanol injection and evaporation solvent method. Finally, MTM-loaded hydrogels (HG) were obtained by passive loading using a urea derivative non-peptidic hydrogelator. MTM-loaded NPs and LIP display optimal hydrodynamic radii between 80 and 105 nm with a very low polydispersity index (PdI) and encapsulation efficiencies (EE) of 92 and 30%, respectively. All formulations show a high stability and different release rates ranging from a fast release in HG (100% after 30 min) to more sustained release from NPs (100% after 24 h) and LIP (40% after 48 h). In vitro assays confirmed that all assayed MTM formulations retain the cytotoxic, anti-invasive and anti-stemness potential of free MTM in models of myxoid liposarcoma, undifferentiated pleomorphic sarcoma and chondrosarcoma. In addition, whole genome transcriptomic analysis evidenced the ability of MTM, both free and encapsulated, to act as a multi-repressor of several tumour-promoting pathways at once. Importantly, the treatment of mice bearing sarcoma xenografts showed that encapsulated MTM exhibited enhanced therapeutic effects and was better tolerated than free MTM. CONCLUSIONS: Overall, these novel formulations may represent an efficient and safer MTM-delivering alternative for sarcoma treatment.


Assuntos
Plicamicina/análogos & derivados , Plicamicina/farmacologia , Plicamicina/uso terapêutico , Sarcoma/patologia , Animais , Antibacterianos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Condrossarcoma/tratamento farmacológico , Composição de Medicamentos , Feminino , Humanos , Hidrogéis/química , Hidrogéis/uso terapêutico , Lipossomos , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Sarcoma/tratamento farmacológico
6.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066055

RESUMO

Arthropod-borne flaviviruses, such as Zika virus (ZIKV), Usutu virus (USUV), and West Nile virus (WNV), are a growing cause of human illness and death around the world. Presently, no licensed antivirals to control them are available and, therefore, search for broad-spectrum antivirals, including host-directed compounds, is essential. The PI3K/Akt pathway controls essential cellular functions involved in cell metabolism and proliferation. Moreover, Akt has been found to participate in modulating replication in different viruses including the flaviviruses. In this work we studied the interaction of flavivirus NS5 polymerases with the cellular kinase Akt. In vitro NS5 phosphorylation experiments with Akt showed that flavivirus NS5 polymerases are phosphorylated and co-immunoprecipitate by Akt. Polymerase activity assays of Ala- and Glu-generated mutants for the Akt-phosphorylated residues also indicate that Glu mutants of ZIKV and USUV NS5s present a reduced primer-extension activity that was not observed in WNV mutants. Furthermore, treatment with Akt inhibitors (MK-2206, honokiol and ipatasertib) reduced USUV and ZIKV titers in cell culture but, except for honokiol, not WNV. All these findings suggest an important role for Akt in flavivirus replication although with specific differences among viruses and encourage further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral potential target.


Assuntos
Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Flavivirus/efeitos dos fármacos , Genoma Viral , Humanos , Mutação , Fases de Leitura Aberta , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Proteoma , Proteômica/métodos , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/fisiologia , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
7.
Pathogens ; 10(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672588

RESUMO

Usutu virus (USUV) is a flavivirus that mainly infects wild birds through the bite of Culex mosquitoes. Recent outbreaks have been associated with an increased number of cases in humans. Despite being a growing source of public health concerns, there is yet insufficient data on the virus or host cell targets for infection control. In this work we have investigated whether the cellular kinase Akt and USUV polymerase NS5 interact and co-localize in a cell. To this aim, we performed co-immunoprecipitation (Co-IP) assays, followed by confocal microscopy analyses. We further tested whether NS5 is a phosphorylation substrate of Akt in vitro. Finally, to examine its role in viral replication, we chemically silenced Akt with three inhibitors (MK-2206, honokiol and ipatasertib). We found that both proteins are localized (confocal) and pulled down (Co-IP) together when expressed in different cell lines, supporting the fact that they are interacting partners. This possibility was further sustained by data showing that NS5 is phosphorylated by Akt. Treatment of USUV-infected cells with Akt-specific inhibitors led to decreases in virus titers (>10-fold). Our results suggest an important role for Akt in virus replication and stimulate further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral target.

8.
Front Microbiol ; 11: 577550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193197

RESUMO

Tiny Earth (TE) is a popular international citizen science program aimed at improving public awareness on the growing antimicrobial resistance problem of which MicroMundo Albacete is a Spanish node. With a protocol that is focused on the isolation of antibiotics-producing actinomycetes from soil, 70% of the high school students in MicroMundo Albacete 2020 isolated colonies with antagonistic activity against Gram-positive tester bacteria. However, no activity was found against Gram-negative bacteria. Here, we further adapted the protocol toward a more targeted screening that also enables isolation of antagonistic bacteria against Gram negatives using two different reverse-antibiosis approaches involving a spraying technique or flipping soil sample disks upside down. Exploiting the soil samples from MicroMundo Albacete 2020, the new approaches yielded isolation of actinomycete bacteria with antagonistic activity against Gram-negative as well as Gram-positive tester bacteria. We propose that (educational) science programs which aim to search for antibiotic-producing bacteria may implement these approaches in their protocol to promote a successful and stimulating outcome of the experiment for the participating students.

9.
Food Chem ; 328: 127131, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32485586

RESUMO

Carvacrol (CAR) is a natural bioactive compound with antioxidant and antimicrobial activity that is present in essential oils. The application of CAR in food preservation is hampered by its high volatility, low solubility in water, and susceptibility to light, heat and oxygen degradation. Polylactide (PLA) is an FDA-approved polymer derived from renewable resources. Controlled release of CAR from PLA nanoparticles (NPs) could improve its antimicrobial efficacy and storage. In this study, negatively charged CAR-NPs and positively charged polyethylenimine (PEI)-coated CAR-(PEI)NPs were formulated by nanoprecipitation methods and characterised by dynamic light scattering, electron microscopy, encapsulation efficiency, and drug loading capacity. The positively charged (PEI)NPs enhanced the in vitro antimicrobial activity of CAR against Escherichia coli, Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus. Bacterial uptake, evaporation tests, release studies and NP stability after storage were assessed to provide evidence supporting CAR-(PEI)NPs as a potential nanocarrier for further development in food preservation.


Assuntos
Antibacterianos/farmacologia , Cimenos/farmacologia , Nanopartículas/química , Poliésteres/química , Antibacterianos/química , Cimenos/química , Cimenos/farmacocinética , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Microbiologia de Alimentos , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polietilenoimina/química , Salmonella enterica/efeitos dos fármacos , Solubilidade , Staphylococcus aureus/efeitos dos fármacos
10.
FEMS Microbiol Lett ; 366(24)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995181

RESUMO

Small World Initiative and Tiny Earth are popular citizen science programs that are implemented worldwide in response to the global antibiotic resistance crisis. When starting up the program in Albacete (Spain), we noted that rates of isolated antibiotic-producing bacteria are generally low. To make the activity more stimulating for participating students, we modified the protocol to obtain more positive results by focusing on isolation of actinomycetes, the main producers of most clinically used antibiotics. Adaptations involved redesigning culture media, incubation times and temperatures, and modification of the ESKAPE antibiosis experiment by employing an agar-transplantation step. Of 390 bacterial isolates tested, almost 6% tested positive in antibiosis experiments and DNA sequence analysis confirmed that all positives are actinomycetes, demonstrating that our protocol is efficient toward isolating antibiotic-producing actinomycetes from soil. Evaluation forms filled by participating students indicated that the program was received very positively and that our modifications contribute to make this educational program more stimulating and efficient.


Assuntos
Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Antibacterianos/metabolismo , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana , Microbiologia do Solo
11.
Biomed Res Int ; 2016: 9838041, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28070522

RESUMO

Hepatitis E virus (HEV) is the main cause of acute viral hepatitis worldwide. Its presence in developing countries has been documented for decades. Developed countries were supposed to be virus-free and initially only imported cases were detected in those areas. However, sporadic and autochthonous cases of HEV infection have been identified and studies reveal that the virus is worldwide spread. Chronic hepatitis and multiple extrahepatic manifestations have also been associated with HEV. We review the data from European countries, where human, animal, and environmental data have been collected since the 90s. In Europe, autochthonous HEV strains were first detected in the late 90s and early 2000s. Since then, serological data have shown that the virus infects quite frequently the European population and that some species, such as pigs, wild boars, and deer, are reservoirs. HEV strains can be isolated from environmental samples and reach the food chain, as shown by the detection of the virus in mussels and in contaminated pork products as sausages or meat. All these data highlight the need of studies directed to control the sources of HEV to protect immunocompromised individuals that seem the weakest link of the HEV epidemiology in industrialized regions.


Assuntos
Vírus da Hepatite E/isolamento & purificação , Hepatite E/veterinária , Hepatite E/virologia , Animais , Anticorpos Antivirais , Doadores de Sangue , Doença Crônica , Cervos/virologia , Países Desenvolvidos , Reservatórios de Doenças , Europa (Continente) , Feminino , Contaminação de Alimentos , Genótipo , Humanos , Masculino , Carne , Estudos Soroepidemiológicos , Sus scrofa/virologia , Suínos/virologia , Zoonoses/virologia
12.
Antiviral Res ; 108: 14-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24815023

RESUMO

The hepatitis C virus (HCV) replicates its genome in replication complexes located in micro-vesicles derived from endoplasmic reticulum. The composition of these replication complexes indicates that proteins, both viral and cellular in origin, are at high concentrations. Under these conditions, protein-protein interactions must occur although their role in the replication pathways is unknown. HCV RNA-dependent RNA-polymerase (NS5B) initiates RNA synthesis in these vesicles by a de novo (DN) mechanism. After initiation, newly synthesized dsRNA could induce conformational changes that direct the transition from an initiating complex into a processive elongation complex. In this report, we analyze the role played by NS5B-NS5B intermolecular interactions controlling these conformational rearrangements. Based on NS5B protein-protein docking and molecular dynamics simulations, we constructed mutants of residues predicted to be involved in protein-protein interactions. Changes at these positions induced severe defects in both the activity of the enzyme and the replication of a subgenomic replicon. Thus, mutations at the interaction surface decreased both DN synthesis initiation and processive elongation activities. Based on this analysis, we define at an atomic level an NS5B homomeric interaction model that connects the T-helix in the thumb subdomain of one monomer, with the F-helix of the fingers subdomain in other monomer. Knowing the molecular determinants involved in viral replication could be helpful to delineate new and powerful antiviral strategies.


Assuntos
Antivirais/metabolismo , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Multimerização Proteica , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Antivirais/isolamento & purificação , Desenho de Fármacos , Hepacivirus/química , Hepacivirus/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
13.
J Gen Virol ; 93(Pt 4): 780-785, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22170636

RESUMO

The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is part of the viral replicative complex and plays a crucial role in HCV replication. It has been described that NS5B interacts with cellular proteins, and that interactions between NS5B and host proteins are crucial for viral replication. Some of the host factors involved in the HCV replication cycle include the oestrogen receptor alpha (ESR1), protein kinases (c-Src) and chaperones (Hsp70). In this report, we determine the requirements for the interplay between NS5B and the domain C of ESR1 (ESR1C) by using Förster Resonance Energy Transfer. NS5B-ESR1C and ESR1C-ESR1C interactions are dependent on ionic strength, indicating that contacts are mainly electrostatic. Additionally, NS5B residues involved in NS5B oligomerization were also essential for NS5B-ESR1C interaction. The study of the interactions among viral and host factors will provide data to establish innovative therapeutic strategies and the development of new antiviral drugs.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hepacivirus/metabolismo , Hepatite C/virologia , Proteínas não Estruturais Virais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Hepatite C/metabolismo , Humanos , Domínios e Motivos de Interação entre Proteínas/fisiologia , Replicação Viral/fisiologia
14.
PLoS One ; 6(4): e18515, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490973

RESUMO

Hepatitis C virus (HCV) shows a great geographical diversity reflected in the high number of circulating genotypes and subtypes. The response to HCV treatment is genotype specific, with the predominant genotype 1 showing the lowest rate of sustained virological response. Virally encoded enzymes are candidate targets for intervention. In particular, promising antiviral molecules are being developed to target the viral NS3/4A protease and NS5B polymerase. Most of the studies with the NS5B polymerase have been done with genotypes 1b and 2a, whilst information about other genotypes is scarce. Here, we have characterized the de novo activity of NS5B from genotypes 1 to 5, with emphasis on conditions for optimum activity and kinetic constants. Polymerase cooperativity was determined by calculating the Hill coefficient and oligomerization through a new FRET-based method. The V(max)/K(m) ratios were statistically different between genotype 1 and the other genotypes (p<0.001), mainly due to differences in V(max) values, but differences in the Hill coefficient and NS5B oligomerization were noted. Analysis of sequence changes among the studied polymerases and crystal structures show the αF helix as a structural component probably involved in NS5B-NS5B interactions. The viability of the interaction of αF and αT helixes was confirmed by docking studies and calculation of electrostatic surface potentials for genotype 1 and point mutants corresponding to mutations from different genotypes. Results presented in this study reveal the existence of genotypic differences in NS5B de novo activity and oligomerization. Furthermore, these results allow us to define two regions, one consisting of residues Glu128, Asp129, and Glu248, and the other consisting of residues of αT helix possibly involved in NS5B-NS5B interactions.


Assuntos
Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Genótipo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/classificação , RNA Polimerase Dependente de RNA/genética , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/genética
15.
Antiviral Res ; 87(1): 57-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20430057

RESUMO

Hepatitis C virus (HCV) is a positive-strand RNA virus ((+)RNA) that replicates its genome in replication complexes (RC) associated to endoplasmic reticulum (ER)-derived micro-vesicles. One key protein in these complexes is NS5B, a viral enzyme that shows the RNA binding and RNA-dependent RNA polymerase (RdRp) activities. For this reason, NS5B protein has become one of the most important targets for designing new antiviral therapy compounds. Recently, it has been demonstrated that NS5B interacts itself forming oligomers, and mutations that disrupt these interactions are lethal for polymerase function. Therefore, NS5B oligomerization could be a new target for the design of anti-HCV compounds. In this study we describe a new accurate method to analyze NS5B-NS5B interactions by using Förster-resonance-energy transfer (FRET). This method allows analyses of the conditions, mainly ionic strength, driving the interactions between NS5B-cyan and NS5B-citrine constructs. Experiments using different combinations of point mutants rendered FRET values from zero to around 100%, suggesting the geometry of the interaction. Finally, oligomerization experiments in the presence of non-nucleoside inhibitor (NNI) PF-254027 gave a statistically significant reduction in the FRET signal, suggesting a new connection between NS5B oligomerization and NNI binding.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Hepacivirus/enzimologia , Multimerização Proteica , Proteínas não Estruturais Virais/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Mutantes/metabolismo , Mutação Puntual , Ligação Proteica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
16.
J Water Health ; 8(2): 346-54, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20154397

RESUMO

The aim of the study was to analyse the evolution of the prevalence of HAV and HEV in the population of eastern Spain by analysing the viruses excreted in urban sewage. Raw urban sewage samples were collected and analysed during several years using RT-PCR techniques and sequencing analysis. Two limiting regions were analysed, one of them having implemented HAV vaccination programs. Acute symptomatic HEV cases were also examined. Results were compared with those from previous studies in the area using identical methodology. The percentage of positive HAV samples in urban sewage fell from 57.4% to 3.1% in 5-10 years in the two studied areas in Spain. Around 30% of the urban sewage samples were positive for HEV in the absence of agricultural sources of contamination. HEV RNA was also detected in four clinical cases of acute hepatitis. The dramatic reduction in the presence of HAV in raw urban sewage observed in eastern Spain could be most likely related to the general improvement in sanitation. However, these improvements would not have an equivalent effect on the circulation of HEV and this observation could be explained by the presence of animal reservoirs for HEV, which act as external sources of infections.


Assuntos
Vírus da Hepatite A/isolamento & purificação , Vírus da Hepatite E/isolamento & purificação , Esgotos/virologia , Genes Virais , Hepatite A/epidemiologia , Vírus da Hepatite A/genética , Hepatite E/epidemiologia , Vírus da Hepatite E/genética , Humanos , Prevalência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espanha/epidemiologia , População Urbana
17.
J Water Health ; 7(4): 664-73, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19590134

RESUMO

Autochthonous hepatitis E virus (HEV) strains have been described infecting populations of industrialized countries, previously considered as non-endemic areas. The HEV strains circulating in one of those areas in south-western Europe (Barcelona, Spain) have been studied by analysing amplicons obtained from HEV genomes identified in wastewater, biosolids and sludge. Six sewage and two biosolid HEV positive samples from urban wastewater treatment plants and two positive HEV sludge samples with animal contamination were analysed by cloning and sequencing of 10-12 clones per sample. The results proved the presence of HEV strains belonging to genotype 3 and also sporadically to genotype 1 in urban sewage and biosolids, showing the simultaneous circulation of diverse HEV strains in the human population of the studied area. Only HEV genotype 3 was identified in slaughterhouse sludge samples. The circulation of genotype 1 in industrialized areas may have further health implications since this genotype has been associated with important epidemics in developing areas. Contamination of food and water through their contact with sewage not properly treated and biosolids presenting HEV may represent a significant risk for human populations in relation to HEV even in industrialized areas.


Assuntos
Vírus da Hepatite E/isolamento & purificação , Esgotos/virologia , Microbiologia da Água , Matadouros , Animais , Exposição Ambiental , Genótipo , Hepatite E/epidemiologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Humanos , Reação em Cadeia da Polimerase , Análise de Sequência , Espanha/epidemiologia , População Urbana
18.
J Virol Methods ; 158(1-2): 104-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19428577

RESUMO

Human adenovirus and JC polyomavirus have been proposed as viral indicators of human faecal contamination of water. This study compared concentration and nucleic acid extraction methods and defines a protocol for quantifying human adenoviruses (HAdV), JC polyomavirus (JCPyV) and noroviruses (NoV) in source and drinking water. River water samples and spiked tap water samples were used to evaluate virus recovery, applying quantitative PCR (qPCR) to five concentration methods. In the case of 10-L samples, the use of ultrafiltration cartridges produced acceptable recoveries for HAdV and JCPyV, but they were inefficient for noroviruses and could not be applied to high-volume and river water samples with medium turbidity. The glass wool method with pre-acidification gave similar recoveries and made it possible to detect NoV. In the case of 50-L samples, the method that produced the highest recovery efficiency and applicability was glass wool filtration. Comparing different sample volumes of a river used as source water showed that the largest number of viruses were quantified when lower volumes (1L) were tested (1.5 x 10(4) HAdV genome copies (GC)/L and 2.8 x 10(3) JCPyV GC/L). The methods developed are easy to standardize and may be valuable tools for the control of viral contamination in source water and for assessing the efficiency of virus removal in drinking water treatment plants.


Assuntos
Adenovírus Humanos/isolamento & purificação , Água Doce/microbiologia , Vírus JC/isolamento & purificação , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Poluição da Água , Adenovírus Humanos/genética , Filtração/métodos , Humanos , Vírus JC/genética , Norovirus/genética
19.
Environ Sci Technol ; 40(23): 7416-22, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17180997

RESUMO

Large numbers of viruses are excreted in human feces and urine, which even at low concentrations may cause illness when ingested. Some of these viruses have not been traditionally monitored in terms of waterborne diseases and are considered emergent viruses, such as hepatitis E virus (HEV) and JC and BK polyomavirus (JCPyV and BKPyV). The high prevalence of human adenoviruses (HAdV) and polyomaviruses, which both show DNA genomes, in sewage from widely divergent areas has suggested the relevance of evaluating these viruses as possible indicators of viral contamination. The concentration of these viruses was analyzed in sewage and river water and after treatment in a drinking-water treatment plant including chlorination, flocculation, ozonation, and granulate active carbon (GAC) filtration. Samples of GAC-filtered water were collected before a second chlorination treatment. The river used as a source of fresh water presented an average concentration of 2.6 x 10(1) JCPyV and 4 x 10(2) HAdV GC (genome copies)/L. A removal of 2 logarithms (99%) of HAdV and JCPyV was observed in the drinking-water treatment plant. All the GAC-filtered water samples studied contained HAdV, with a mean value of 4.3 HAdV GC/L. HEV strains belonging to genotype 3 were frequently detected in low concentrations in urban sewage and in biosolids or sewage containing swine feces but not in the river water samples studied. The detection of viruses by molecular techniques is useful for genetically describe emergent viruses in community wastewaters and water supplies. Quantification of JCPyV and HAdV using quantitative real-time PCR (QPCR) may be useful for evaluating virus removal efficiency in water treatment plants and as an index of the virological quality of water and of the potential presence of human viruses.


Assuntos
Adenoviridae/genética , Monitoramento Ambiental/estatística & dados numéricos , Vírus da Hepatite E/genética , Polyomavirus/genética , Rios/virologia , Esgotos/virologia , Microbiologia da Água , Abastecimento de Água/análise , Sequência de Bases , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Espanha , Eliminação de Resíduos Líquidos
20.
Appl Environ Microbiol ; 72(12): 7894-6, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028225

RESUMO

Human adenoviruses (HAdV) and human polyomavirus JCPyV have been previously proposed as indicators of fecal viral contamination in the environment. Different wastewater matrices have been analyzed by applying real-time quantitative PCR procedures for the presence, quantity, and stability of a wide diversity of excreted HAdV and JCPyV. High quantities of HAdV and JCPyV were detected in sewage, effluent wastewater, sludge, and biosolid samples. Both viruses showed high stability in urban sewage. These results confirm the suitability of both viruses as indicators of human fecal viral pollution.


Assuntos
Adenovírus Humanos/isolamento & purificação , Vírus JC/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Eliminação de Resíduos Líquidos/métodos , Poluição da Água/análise , Adenovírus Humanos/genética , Fezes/virologia , Água Doce/virologia , Humanos , Vírus JC/genética , Esgotos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...