Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biomed Pharmacother ; 171: 116104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198956

RESUMO

Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 µg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Obesidade , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Ouro/farmacologia , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade/tratamento farmacológico , Termogênese , Aumento de Peso
2.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139277

RESUMO

The progression of obesity and type 2 diabetes (T2D) is intricately linked with adipose tissue (AT) angiogenesis. Despite an established network of microRNAs (miRNAs) regulating AT function, the specific role of angiogenic miRNAs remains less understood. The miR-221/222 cluster has recently emerged as being associated with antiangiogenic activity. However, no studies have explored its role in human AT amidst the concurrent development of obesity and T2D. Therefore, this study aims to investigate the association between the miR-221-3p/222-3p cluster in human AT and its regulatory network with obesity and T2D. MiR-221-3p/222-3p and their target gene (TG) expression levels were quantified through qPCR in visceral (VAT) and subcutaneous (SAT) AT from patients (n = 33) categorized based on BMI as normoweight (NW) and obese (OB) and by glycemic status as normoglycemic (NG) and type 2 diabetic (T2D) subjects. In silico analyses of miR-221-3p/222-3p and their TGs were conducted to identify pertinent signaling pathways. The results of a multivariate analysis, considering the simultaneous expression of miR-221-3p and miR-222-3p as dependent variables, revealed statistically significant distinctions when accounting for variables such as tissue depot, obesity, sex, and T2D as independent factors. Furthermore, both miRNAs and their TGs exhibited differential expression patterns based on obesity severity, glycemic status, sex, and type of AT depot. Our in silico analysis indicated that miR-221-3p/222-3p cluster TGs predominantly participate in angiogenesis, WNT signaling, and apoptosis pathways. In conclusion, these findings underscore a promising avenue for future research, emphasizing the miR-221-3p/222-3p cluster and its associated regulatory networks as potential targets for addressing obesity and related metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo
3.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833902

RESUMO

As the human thymus ages, it undergoes a transformation into adipose tissue known as TAT. Interestingly, in previous research, we observed elevated levels of vascular endothelial growth factor A (VEGFA) in TAT from patients with ischemic cardiomyopathy (IC), particularly in those over 70 years old. Moreover, in contrast to subcutaneous adipose tissue (SAT), TAT in elderly individuals exhibits enhanced angiogenic properties and the ability to stimulate tube formation. This makes TAT a promising candidate for angiogenic therapies and the regeneration of ischemic tissues following coronary surgery. MicroRNAs (miRNAs) have emerged as attractive therapeutic targets, especially those that regulate angiogenic processes. The study's purpose is to determine the miRNA network associated with both the VEGFA pathway regulation and the enrichment of age-linked angiogenesis in the TAT. RT-PCR was used to analyze angiogenic miRNAs and the expression levels of their predicted target genes in both TAT and SAT from elderly and middle-aged patients treated with coronary artery bypass graft surgery. miRTargetLink Human was used to search for miRNAs and their target genes. PANTHER was used to annotate the biological processes of the predicted targets. The expression of miR-15b-5p and miR-29a-3p was significantly upregulated in the TAT of elderly compared with middle-aged patients. Interestingly, VEGFA and other angiogenic targets were significantly upregulated in the TAT of elderly patients. Specifically: JAG1, PDGFC, VEGFA, FGF2, KDR, NOTCH2, FOS, PDGFRA, PDGFRB, and RHOB were upregulated, while PIK3CG and WNT7A were downregulated. Our results provide strong evidence of a miRNA/mRNA interaction network linked with age-associated TAT angiogenic enrichment in patients with IC.


Assuntos
Cardiomiopatias , MicroRNAs , Isquemia Miocárdica , Idoso , Humanos , Pessoa de Meia-Idade , Tecido Adiposo/metabolismo , MicroRNAs/metabolismo , Isquemia Miocárdica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982562

RESUMO

DNA damage has been extensively studied as a potentially helpful tool in assessing and preventing cancer, having been widely associated with the deregulation of DNA damage repair (DDR) genes and with an increased risk of cancer. Adipose tissue and tumoral cells engage in a reciprocal interaction to establish an inflammatory microenvironment that enhances cancer growth by modifying epigenetic and gene expression patterns. Here, we hypothesize that 8-oxoguanine DNA glycosylase 1 (OGG1)-a DNA repair enzyme-may represent an attractive target that connects colorectal cancer (CRC) and obesity. In order to understand the mechanisms underlying the development of CRC and obesity, the expression and methylation of DDR genes were analyzed in visceral adipose tissue from CRC and healthy participants. Gene expression analysis revealed an upregulation of OGG1 expression in CRC participants (p < 0.005) and a downregulation of OGG1 in normal-weight healthy patients (p < 0.05). Interestingly, the methylation analysis showed the hypermethylation of OGG1 in CRC patients (p < 0.05). Moreover, expression patterns of OGG1 were found to be regulated by vitamin D and inflammatory genes. In general, our results showed evidence that OGG1 can regulate CRC risk through obesity and may act as a biomarker for CRC.


Assuntos
Neoplasias Colorretais , DNA Glicosilases , Humanos , Neoplasias Colorretais/genética , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Obesidade/complicações , Obesidade/genética , Fatores de Risco , Microambiente Tumoral , Regulação para Cima
5.
Nutrients ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631284

RESUMO

OBJECTIVE: To investigate the association of plasma levels of endocannabinoids with fecal microbiota. METHODS: Plasma levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as well as their eleven analogues, and arachidonic acid (AA), were measured using liquid chromatography-tandem mass spectrometry in 92 young adults. DNA extracted from stool samples was analyzed using 16S rRNA gene sequencing. Lipopolysaccharide levels were measured in plasma samples. RESULTS: Plasma levels of endocannabinoids and their analogues were not related to beta or alpha diversity indexes. Plasma levels of AEA and related N-acylethanolamines correlated positively with the relative abundance of Faecalibacterium genus (all rho ≥ 0.26, p ≤ 0.012) and Akkermansia genus (all rho ≥ 0.22, p ≤ 0.036), and negatively with the relative abundance of Bilophila genus (all rho ≤ -0.23, p ≤ 0.031). Moreover, plasma levels of 2-AG and other acylglycerols correlated positively with the relative abundance of Parasutterella (all rho ≥ 0.24, p ≤ 0.020) and Odoribacter genera (all rho ≥ 0.27, p ≤ 0.011), and negatively with the relative abundance of Prevotella genus (all rho ≤ -0.24, p ≤ 0.023). In participants with high lipopolysaccharide values, the plasma levels of AEA and related N-acylethanolamines, as well as AA and 2-AG, were negatively correlated with plasma levels of lipopolysaccharide (all rho ≤ -0.24, p ≤ 0.020). CONCLUSION: Plasma levels of endocannabinoids and their analogues are correlated to specific fecal bacterial genera involved in maintaining gut barrier integrity in young adults. This suggests that plasma levels of endocannabinoids and their analogues may play a role in the gut barrier integrity in young adults.


Assuntos
Endocanabinoides , Microbioma Gastrointestinal , Bactérias/genética , Fezes/microbiologia , Humanos , Lipopolissacarídeos , RNA Ribossômico 16S/genética , Adulto Jovem
6.
Mol Ther Nucleic Acids ; 26: 401-416, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34552821

RESUMO

MicroRNAs (miRNAs) are promising drug targets for obesity and metabolic disorders. Recently, miRNA mimics are providing a unique mechanism of action that guides the process for drug development and sets out the context of their therapeutic application. miRNA (miR)-21 expression in white adipose tissue (WAT) has been associated with obesity. We aimed to analyze miR-21 expression levels in relation to diabetes and obesity to determine the effect that miR-21 mimic has on processes involved in WAT functionality, to dissect the underlying molecular mechanisms, and to study the potential therapeutic application of the miR-21 mimic against obesity. We found higher miR-21 levels in WAT from non-diabetic obese compared to normoweight humans and mice. Moreover, in 3T3-L1 adipocytes, miR-21 mimic affect genes involved in WAT functionality regulation and significantly increase the expression of genes involved in browning and thermogenesis. Interestingly, in vivo treatment with the miR-21 mimic blocked weight gain induced by a high-fat diet in obese mice, without modifying food intake or physical activity. This was associated with metabolic enhancement, WAT browning, and brown adipose tissue (AT) thermogenic programming through vascular endothelial growth factor A (VEGF-A), p53, and transforming growth factor ß1 (TGF-ß1) signaling pathways. Our findings suggest that miR-21 mimic-based therapy may provide a new opportunity to therapeutically manage obesity and consequently, its associated alterations.

7.
Front Med (Lausanne) ; 8: 712908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458288

RESUMO

Background: Antibiotic therapy used to eradicate Helicobacter pylori has been associated with changes in plasma ghrelin and alterations in the gut microbiota. On the other hand, changes in ghrelin levels have been related to changes in gut microbiota composition. Our aim was to evaluate the relationship between changes in the gut microbiota and ghrelin levels in H. pylori infected patients who received antibiotic treatment for its eradication. Methods: A prospective case-control study that included forty H. pylori-positive patients who received eradication therapy (omeprazole, clarithromycin, and amoxicillin) and twenty healthy H. pylori antigen-negative participants. Patients were evaluated, including clinical, anthropometric and dietary variables, before and 2 months after treatment. Gut microbiota composition was analyzed through 16S rRNA amplicon sequencing (IlluminaMiSeq). Results: Changes in gut microbiota profiles and decrease in ghrelin levels were identified after H. pylori eradication treatment. Gut bacteria such as Bifidobacterium longum, Bacteroides, Prevotella, Parabacteroides distasonis, and RS045 have been linked to ghrelin levels fasting and/or post meals. Changes in the abundance of Lachnospiraceae, its genus Blautia, as well as Prevotella stercorea, and Megasphaera have been inversely associated with changes in ghrelin after eradication treatment. Conclusions: Eradication treatment for H. pylori produces changes in the composition of the intestinal microbiota and ghrelin levels. The imbalance between lactate producers such as Blautia, and lactate consumers such as Megasphaera, Lachnospiraceae, or Prevotella, could trigger changes related to ghrelin levels under the alteration of the eradication therapy used for H. pylori. In addition, acetate producing bacteria such as B. longum, Bacteroides, and P. distasonis could also play an important role in ghrelin regulation.

8.
Front Endocrinol (Lausanne) ; 12: 639856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220702

RESUMO

Helicobacter pylori (H. pylori) is a gram-negative bacterium that infects approximately 4.4 billion individuals worldwide. Although the majority of infected individuals remain asymptomatic, this bacterium colonizes the gastric mucosa causing the development of various clinical conditions as peptic ulcers, chronic gastritis and gastric adenocarcinomas and mucosa-associated lymphoid tissue lymphomas, but complications are not limited to gastric ones. Extradigestive pathologies, including metabolic disturbances such as diabetes, obesity and nonalcoholic fatty liver disease, have also been associated with H. pylori infection. However, the underlying mechanisms connecting H. pylori with extragastric metabolic diseases needs to be clarified. Notably, the latest studies on the topic have confirmed that H. pylori infection modulates gut microbiota in humans. Damage in the gut bacterial community (dysbiosis) has been widely related to metabolic dysregulation by affecting adiposity, host energy balance, carbohydrate metabolism, and hormonal modulation, among others. Taking into account that Type 2 diabetic patients are more prone to be H. pylori positive, gut microbiota emerges as putative key factor responsible for this interaction. In this regard, the therapy of choice for H. pylori eradication, based on proton pump inhibitor combined with two or more antibiotics, also alters gut microbiota composition, but consequences on metabolic health of the patients has been scarcely explored. Recent studies from our group showed that, despite decreasing gut bacterial diversity, conventional H. pylori eradication therapy is related to positive changes in glucose and lipid profiles. The mechanistic insights explaining these effects should also be addressed in future research. This review will deal with the role of gut microbiota as the linking factor between H. pylori infection and metabolic diseases, and discussed the impact that gut bacterial modulation by H. pylori eradication treatment can also have in host's metabolism. For this purpose, new evidence from the latest human studies published in more recent years will be analyzed.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter/microbiologia , Helicobacter pylori , Doenças Metabólicas/microbiologia , Animais , Antibacterianos/farmacologia , Metabolismo dos Carboidratos , Disbiose , Mucosa Gástrica/microbiologia , Glucose/metabolismo , Humanos , Úlcera Péptica/tratamento farmacológico , Transporte Proteico , Análise de Sequência de DNA
9.
Mol Ther Nucleic Acids ; 23: 1035-1052, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33614249

RESUMO

Circulating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of circulating miRNAs associated with T2D onset remains unexplored. Herein, we investigated the relationship between T2D-associated circulating miRNAs and AT function, as well as the role of preadipocytes and adipocytes as secreting cells of candidate circulating miRNAs. Among the plasma miRNAs related to T2D onset in the CORonary Diet Intervention with Olive oil and cardiovascular PREVention (CORDIOPREV) cohort, baseline miR-223-3p levels (diminished in patients who next developed T2D [incident-T2D]) were significantly related to AT insulin resistance (IR). Baseline serum from incident-T2D participants induced inflammation and IR in 3T3-L1 adipocytes. We demonstrated that tumor necrosis factor (TNF)-α inhibited miR-223-3p secretion while enhancing miR-223-3p intracellular accumulation in 3T3-L1 (pre)adipocytes. Overexpression studies showed that an intracellular increase of miR-223-3p impaired glucose and lipid metabolism in these cells. Our findings provide mechanistic insights into the alteration of circulating miRNAs preceding T2D, unveiling both preadipocytes and adipocytes as miR-223-3p-secreting cells and suggesting that inflammation promotes miR-223-3p intracellular accumulation, which might contribute to (pre)adipocyte dysfunction and body metabolic dysregulation.

10.
Front Med (Lausanne) ; 7: 417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850910

RESUMO

Background: The gut microbiome plays an important role in the lipid metabolism. Antibiotic treatment causes changes in the intestinal microbiota. Our objective was to explore the relationship between changes in the intestinal microbiota and the level of plasma high density lipoprotein cholesterol (HDL) and low density lipoprotein cholesterol (LDL). Methods: Prospective case-control study with Helicobacter pylori-positive patients undergoing eradication therapy with omeprazole, clarithromycin, and amoxicillin. Stool and blood samples were obtained from 20 controls (H. pylori negative) and 40 patients before and 2 months after antibiotic treatment. Gut microbiota was determined through 16S rRNA amplicon sequencing (Illumina MiSeq). Results: Eradication treatment for H. pylori increased the HDL levels, and caused changes in gut microbiota profiles. An unfavorable lipid profiles (high LDL and low HDL levels) was associated with a low microbial richness and an increase of the Bacteroidetes phylum. Prevotella copri, Lachonobacterium, and Delsufovibrio were positively associated with HDL while Rikenellaceae was negatively associated with HDL after completing antibiotic treatment. Conclusions: Helicobacter pylori eradication treatment could improve lipid metabolism in relation with an increase in the HDL. Changes in the abundance of specific bacteria, such as P. copri, Lachonobacterium, Delsufovibrio, and Rikenellaceae could be associated with change in the plasma HDL levels.

11.
Clin Epigenetics ; 12(1): 83, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517740

RESUMO

BACKGROUNDS: Colorectal cancer (CRC) results from the accumulation of epigenetic and genetic changes in colon cells during neoplasic transformation, which the activation of Wingless (Wnt) signaling pathway is a common mechanism for CRC initiation. The Wnt pathway is mainly regulated by Wnt antagonists, as secreted frizzled-related protein (SFRP) family. Indeed, SFRP2 is proposed as a noninvasive biomarker for CRC diagnosis. Vitamin D also antagonizes Wnt signaling in colon cancers cells. Several studies showed that vitamin D was able to alter DNA methylation, although this mechanism is not yet clear. Therefore, the aim of this study was to find an association between circulating 25-OH vitamin D (30th percentile of vitamin D) and the SFRP2 methylation. METHODS: A total of 67 CRC patients were included in the study. These patients were subdivided into two groups based on their 30th percentile vitamin D (20 patients were below, and 47 participants were above the 30th percentile of vitamin D). We investigated the SFRP2 methylation in peripheral blood mononuclear cells (PBMCs), visceral adipose tissue (VAT), CRC tumor tissue, and adjacent tumor-free area. We also determined the relationship between SFRP2 methylation and methylation of carcinogenic and adipogenic genes. Finally, we tested the effect of vitamin D on the SFRP2 methylation in human colorectal carcinoma cell lines 116 (HCT116) and studied the association of neoadjuvant therapy under the 30th percentile vitamin D with SFRP2 promoter methylation. RESULTS: SFRP2 methylation in tumor area was decreased in patients who had higher levels of vitamin D. SFRP2 promoter methylation was positively correlated in tumor area with insulin and homeostasis model assessment of insulin resistance (HOMA-IR) but negatively correlated with HDL-c. SFRP2 methylation was also correlated with T cell lymphoma invasion and metastasis 1 (TIAM1) methylation in tumor area and CCAAT/enhancer-binding protein alpha (C/EBPα) in VAT. Treatment with vitamin D did not affect SFRP2 methylation in HCT116 cell line. Finally, neoadjuvant treatment was correlated with higher circulating 25-OH vitamin D and SFRP2 methylation under linear regression model. CONCLUSION: Our results showed that higher circulating vitamin D is associated with low SFRP2 promoter methylation. Therefore, our results could suggest that vitamin D may have an epigenetic effect on DNA methylation. Finally, higher vitamin D could contribute to an improvement response to neoadjuvant treatment.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA/efeitos dos fármacos , Proteínas de Membrana/genética , Vitamina D/sangue , Idoso , Neoplasias Colorretais/tratamento farmacológico , Metilação de DNA/genética , Epigenômica/métodos , Feminino , Células HCT116/efeitos dos fármacos , Células HCT116/metabolismo , Humanos , Gordura Intra-Abdominal/metabolismo , Leucócitos Mononucleares/metabolismo , Modelos Lineares , Masculino , Proteínas de Membrana/farmacologia , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Regiões Promotoras Genéticas , Vitamina D/farmacologia , Via de Sinalização Wnt/genética
12.
Metabolites ; 10(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365782

RESUMO

White adipose tissue (WAT) is a highly adaptive endocrine organ that continuously remodels in response to nutritional cues. WAT expands to store excess energy by increasing adipocyte number and/or size. Failure in WAT expansion has serious consequences on metabolic health resulting in altered lipid, glucose, and inflammatory profiles. Besides an impaired adipogenesis, fibrosis and low-grade inflammation also characterize dysfunctional WAT. Nevertheless, the precise mechanisms leading to impaired WAT expansibility are yet unresolved. Autophagy is a conserved and essential process for cellular homeostasis, which constitutively allows the recycling of damaged or long-lived proteins and organelles, but is also highly induced under stress conditions to provide nutrients and remove pathogens. By modulating protein and organelle content, autophagy is also essential for cell remodeling, maintenance, and survival. In this line, autophagy has been involved in many processes affected during WAT maladaptation, including adipogenesis, adipocyte, and macrophage function, inflammatory response, and fibrosis. WAT autophagy dysregulation is related to obesity and diabetes. However, it remains unclear whether WAT autophagy alteration in obese and diabetic patients are the cause or the consequence of WAT malfunction. In this review, current data regarding these issues are discussed, focusing on evidence from human studies.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31608009

RESUMO

Obesity is one of the most serious worldwide epidemics of the twenty-first century according to the World Health Organization. Frequently associated with a number of comorbidities, obesity threatens and compromises individual health and quality of life. Bariatric surgery (BS) has been demonstrated to be an effective treatment to achieve not only sustained weight loss but also significant metabolic improvement that goes beyond mere weight loss. The beneficial effects of BS on metabolic traits are so widely recognized that some authors have proposed BS as metabolic surgery that could be prescribed even for moderate obesity. However, most of the BS procedures imply malabsorption and/or gastric acid reduction which lead to nutrient deficiency and, consequently, further complications could be developed in the long term. In fact, BS not only affects metabolic homeostasis but also has pronounced effects on endocrine systems other than those exclusively involved in metabolic function. The somatotropic, corticotropic, and gonadal axes as well as bone health have also been shown to be affected by the various BS procedures. Accordingly, further consequences and complications of BS in the long term in systems other than metabolic system need to be addressed in large cohorts, taking into account each bariatric procedure before making generalized recommendations for BS. In this review, current data regarding these issues are summarized, paying special attention to the somatotropic, corticotropic, gonadal axes, and bone post-operative health.

14.
PLoS One ; 14(3): e0213548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870471

RESUMO

BACKGROUND: H. pylori infection and eradication cause perturbations of the gut microbiome. The gut microbiota has been identified as a potential contributor to metabolic diseases. We evaluate whether these alterations in intestinal microbiota composition produced by H. pylori infection and its posterior eradication with antibiotic treatment could be associated with glucose homeostasis in metabolically healthy subjects. METHODS: Forty adult patients infected with H. pylori and 20 control subjects were recruited. The infected subjects were evaluated before and two months after eradication treatment (omeprazole, clarithromycin, amoxicillin). The microbiota composition in fecal samples was determined by 16S rRNA gene (V3-V4) sequencing using Illumina Miseq. RESULTS: Patients (pre- and post-H. pylori eradication) showed a decreased bacterial richness and diversity with respect to controls. There was an improvement in glucose homeostasis in subjects two months after H. pylori eradication treatment. Changes in the amount of Rikenellaceae, Butyricimonas, E. biforme, B. fragilis, and Megamonas were inversely associated with changes in the glucose level or related parameters (Hb1ac) in H. pylori eradication subjects. CONCLUSIONS: H. pylori infection and eradication with antibiotic treatment causes alteration of the human gut microbiome. The increase in SCFA-producing bacteria and glucose-removing bacteria, specifically members of Megamonas, Rikenellaceae and Butyricimonas, has been related with an improvement in glucose homeostasis after H. pylori eradication with antibiotic treatment.


Assuntos
Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Claritromicina/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/metabolismo , Homeostase/efeitos dos fármacos , Omeprazol/administração & dosagem , Adulto , Feminino , Microbioma Gastrointestinal/genética , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
15.
BMC Cancer ; 19(1): 93, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665376

RESUMO

BACKGROUND: Visceral adipose tissue (VAT) has been identified as the essential fat depot for pathogenetic theories that associateobesity and colon cancer. LINE-1 hypomethylation has been mostly detected in tumor colon tissue, but less is known about the epigenetic pattern in surrounding tissues. The aim was to analyze for the first time the potential relationship between serum vitamin D, obesity and global methylation (LINE-1) in the visceral adipose tissue (VAT) from patients with and without colorectal cancer. METHODS: A total of 55 patients with colorectal cancer and 35 control subjects participated in the study. LINE-1 DNA methylation in VAT was measured by pyrosequencing. Serum 25(OH)D levels were determined by ELISA. RESULTS: Cancer patients had lower levels of LINE-1 methylation in VAT compared with the control group. In the subjects with colorectal cancer, LINE-1 DNA methylation levels were associated positively with vitamin D levels (r = 0,463; p < 0.001) and negatively with BMI (r = - 0.334, p = 0.01) and HOMA insulin resistance index (r = - 0.348, p = 0.01). Serum vitamin D was the main variable explaining the LINE-1% variance in the cancer group (ß = 0.460, p < 0.001). In a multivariate analysis, subjects with higher LINE-1 methylation values had lower risk of developing colorectal cancer (OR = 0.53; IC95% =0.28-0.99) compared with the control group. CONCLUSIONS: We showed for the first time an association between LINE-1 DNA methylation in VAT and vitamin D levels in subjects with colorectal cancer, highlighting the importance of VAT from cancer patients, which could be modified epigenetically compared to healthy subjects.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Metilação de DNA , Gordura Intra-Abdominal/metabolismo , Vitamina D/análogos & derivados , Idoso , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Obesidade/sangue , Obesidade/genética , Análise de Sequência de DNA , Vitamina D/sangue
16.
Obesity (Silver Spring) ; 27(2): 245-254, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597763

RESUMO

OBJECTIVE: This study aimed to analyze the potential association of different microRNA (miRNA) molecules with both type 2 diabetes (T2D) and obesity and determine their target genes. METHODS: Quantitative PCR was used to analyze the miR-20b, miR-296, and Let-7f levels in human visceral and subcutaneous adipose tissues (ATs) in relation to obesity and T2D, miRTarBase 4.0 was used for validation of target genes, and the Protein Analysis Through Evolutionary Relationships (PANTHER) Classification System and the Database for Annotation, Visualization and Integrated Discovery (DAVID) were used to annotate the biological processes of the predicted targets. RESULTS: In AT, miR-20b, miR-296, and Let-7f levels were significantly different between normoglycemic subjects and those with T2D. In visceral adipose tissue, miRNA levels were higher in normoglycemic/obesity samples than in T2D/obesity samples. miR-20b-miR-296 and Let-7f target genes that showed significant differences in both ATs in relation to obesity and T2D were CDKN1A, CX3CL1, HIF1A, PPP2R1B, STAT3, and VEGFA. These genes are known to be principally involved in the vascular endothelial growth factor (VEGF) and WNT pathways. CONCLUSIONS: This study provides experimental evidence of the possible correlation between AT miR-20b-miR-296-Let-7f with obesity and T2D, which might involve vascular endothelial growth factor and WNT-dependent pathways that are regulated by six different genes, suggesting a novel signaling pathway that could be important for understanding the mechanisms underlying the AT dysfunction associated with obesity and T2D.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/metabolismo , Obesidade/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Eur J Clin Nutr ; 72(Suppl 1): 26-37, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30487562

RESUMO

Recently, a number of studies have related the development of highly prevalent disorders such as type 2 diabetes and obesity to gut microbiota. Obesity itself have been associated with modifications in gut microbiota composition, and a tendency towards an overgrowth of microorganisms that obtain more efficient energy from diet. It's capacity to decompose the polysaccharides that can not be digested by the host, increase monosaccharide and short chain fatty acid (SCFA) production. However, the increase in fat mass is not only due to a more efficient harvest of energy, but also the microbiota participates in changes in endotoxemia, bowel permeability, insulin resistance, hormonal environment, expression of genes regulating lipogenesis, interaction with bile acids, as well as changes in the proportion of brown adipose tissue, and effects associated with the use of drugs such as metformin. Currently, use of prebiotics and probiotics and other innovative techniques like antibiotic therapy or gut microbiota transplant, has been proposed as suitable tools to control the development of metabolic diseases such as obesity or insulin resistance through the diet.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade , Humanos , Microbiota
18.
Am J Physiol Endocrinol Metab ; 316(2): E319-E332, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422702

RESUMO

Impaired adipose tissue (AT) lipid handling and inflammation is associated with obesity-related metabolic diseases. Circulating lipopolysaccharides (LPSs) from gut microbiota (metabolic endotoxemia), proposed as a triggering factor for the low-grade inflammation in obesity, might also be responsible for AT dysfunction. Nevertheless, this hypothesis has not been explored in human obesity. To analyze the relationship between metabolic endotoxemia and AT markers for lipogenesis, lipid handling, and inflammation in human obesity, 33 patients with obesity scheduled for surgery were recruited and classified according to their LPS levels. Visceral and subcutaneous AT gene and protein expression were analyzed and adipocyte and AT in vitro assays performed. Subjects with obesity with a high degree of metabolic endotoxemia had lower expression of key genes for AT function and lipogenesis ( SREBP1, FABP4, FASN, and LEP) but higher expression of inflammatory genes in visceral and subcutaneous AT than subjects with low LPS levels. In vitro experiments corroborated that LPS are responsible for adipocyte and AT inflammation and downregulation of PPARG, SCD, FABP4, and LEP expression and LEP secretion. Thus, metabolic endotoxemia influences AT physiology in human obesity by decreasing the expression of factors involved in AT lipid handling and function as well as by increasing inflammation.


Assuntos
Adipócitos/metabolismo , Endotoxemia/metabolismo , Gordura Intra-Abdominal/metabolismo , Lipopolissacarídeos/metabolismo , Obesidade/genética , Gordura Subcutânea/metabolismo , Tecido Adiposo , Adulto , Ácido Graxo Sintase Tipo I/genética , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Microbioma Gastrointestinal , Expressão Gênica , Humanos , Inflamação , Leptina/genética , Lipogênese/genética , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , PPAR gama/genética , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
19.
PLoS One ; 13(11): e0205858, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408040

RESUMO

GPIHBP1 is a protein localized at the endothelial cell surface that facilitates triglyceride (TG) lipolysis by binding lipoprotein lipase (LPL). Whether Glycosyl Phosphatidyl Inositol high density lipoprotein binding protein 1 (GPIHBP1) function is impaired and may underlie the hyperTG phenotype observed in type 2 diabetes is not yet established. To elucidate the mechanism underlying impaired TG homeostasis in insulin resistance state we studied the effect of insulin on GPIHBP1 protein expression in human microvascular endothelial cells (HMVEC) under flow conditions. Next, we assessed visceral adipose tissue GPIHBP1 protein expression in type 2 diabetes Lepr db/db mouse model as well as in subjects with ranging levels of insulin resistance. We report that insulin reduces the expression of GPIHBP1 protein in HMVECs. Furthermore, GPIHBP1 protein expression in visceral adipose tissue in Lepr db/db mice is significantly reduced as is the active monomeric form of GPIHBP1 as compared to Leprdb/m mice. A similar decrease in GPIHBP1 protein was observed in subjects with increased body weight. GPIHBP1 protein expression was negatively associated with insulin and HOMA-IR. In conclusion, our data suggest that decreased GPIHBP1 availability in insulin resistant state may hamper peripheral lipolysis capacity.


Assuntos
Diabetes Mellitus Tipo 2/genética , Hipertrigliceridemia/genética , Gordura Intra-Abdominal/metabolismo , Receptores de Lipoproteínas/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/patologia , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Lipólise/genética , Lipase Lipoproteica/genética , Camundongos , Camundongos Endogâmicos NOD , Microvasos/metabolismo , Triglicerídeos/genética , Triglicerídeos/metabolismo
20.
Genes (Basel) ; 9(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104553

RESUMO

Epigenetic marks, and especially DNA methylation, are becoming an important factor in obesity, which could help to explain its etiology and associated comorbidities. Adipose tissue, now considered as an important endocrine organ, produces complement system factors. Complement component 3 (C3) turns out to be an important protein in metabolic disorders, via either inflammation or the C3 subproduct acylation stimulating protein (ASP) which directly stimulates lipid storage. In this study, we analyze C3 DNA methylation in adipose tissue from subjects with a different grade of obesity. Adipose tissue samples were collected from subjects with a different degree of obesity determined by their body mass index (BMI) as: Overweight subjects (BMI ≥ 25 and <30), obese class 1/2 subjects (BMI ≥ 30 and <40) and obese class 3 subjects (BMI ≥ 40). C3 DNA methylation was measured for 7 CpGs by pyrosequencition using the Pyromark technology (Qiagen, Madrid Spain). C3 messenger RNA (mRNA) levels were analyzed by pre-designed Taqman assays (Applied biosystems, Foster City, CA, USA) and ASP/C3a was measured using a ELISA kit. The data were analyzed using the statistic package SPSS. C3 DNA methylation levels were lower in the morbid obese group. Accordingly, C3 methylation correlated negatively with BMI and leptin. However, C3 mRNA levels were more associated with insulin resistance, and positive correlations with insulin, glucose and homeostasis model assessment-estimated insulin resistance (HOMA-IR) existed. ASP correlated negatively with high density lipoprotein (HDL) cholesterol. C3 methylation levels were associated to adiposity variables, such as BMI and leptin, while the C3 mRNA levels were associated to glucose metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...