Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 18(1): 222, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149906

RESUMO

BACKGROUND: Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. RESULTS: To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. CONCLUSIONS: Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits.


Assuntos
Inativação Gênica , Aprendizagem , Memória , Plasticidade Neuronal/genética , Prosencéfalo/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Técnicas de Silenciamento de Genes , Marcação de Genes , Imuno-Histoquímica , Neurônios/metabolismo , Prosencéfalo/patologia , RNA Mensageiro/genética , Ratos , Reprodutibilidade dos Testes
2.
Proc Natl Acad Sci U S A ; 110(16): 6583-8, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576723

RESUMO

We have generated a transgenic rat model using RNAi and used it to study the role of the membrane protein Nogo-A in synaptic plasticity and cognition. The membrane protein Nogo-A is expressed in CNS oligodendrocytes and subpopulations of neurons, and it is known to suppress neurite growth and regeneration. The constitutively expressed polymerase II-driven transgene was composed of a microRNA-targeting Nogo-A placed into an intron preceding the coding sequence for EGFP, thus quantitatively labeling cells according to intracellular microRNA expression. The transgenic microRNA in vivo efficiently reduced the concentration of Nogo-A mRNA and protein preferentially in neurons. The resulting significant increase in long-term potentiation in both hippocampus and motor cortex indicates a repressor function of Nogo-A in synaptic plasticity. The transgenic rats exhibited prominent schizophrenia-like behavioral phenotypes, such as perseveration, disrupted prepulse inhibition, and strong withdrawal from social interactions. This fast and efficient microRNA-mediated knockdown provides a way to silence gene expression in vivo in transgenic rats and shows a role of Nogo-A in regulating higher cognitive brain functions.


Assuntos
Cognição/fisiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/farmacologia , Proteínas da Mielina/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas Nogo , Interferência de RNA , Ratos , Ratos Transgênicos , Transgenes/genética
3.
Trends Pharmacol Sci ; 32(6): 366-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21450352

RESUMO

Within the family of voltage-gated calcium channels (VGCCs), L-type channels (L-VGCCs) represent a well-established therapeutic target for calcium channel blockers, which are widely used to treat hypertension and myocardial ischemia. L-VGCCs outside the cardiovascular system also control key physiological processes such as neuronal plasticity, sensory cell function (e.g. in the inner ear and retina) and endocrine function (e.g. in pancreatic beta cells and adrenal chromaffin cells). Research into L-VGCCs was stimulated by the discovery that the known L-VGCC isoforms (Ca(V)1.1, Ca(V)1.2, Ca(V)1.3 and Ca(V)1.4) possess different biophysical properties. However, no L-VGCC-isoform-selective drugs have yet been identified. In this review, we examine Ca(V)1.2 and Ca(V)1.3 isoforms at the level of genetic structure, splice variants, post-translational modifications and functional protein coupling. We discuss candidate Ca(V)1.2- and Ca(V)1.3-specific characteristics as future therapeutic targets in individual organs.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L , Proteínas do Tecido Nervoso/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas , Alinhamento de Sequência , Homologia de Sequência , Transdução de Sinais
4.
Alcohol Clin Exp Res ; 35(4): 747-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21223310

RESUMO

BACKGROUND: Alcohol withdrawal refers to a cluster of symptoms that may occur from suddenly ceasing the use of alcohol after chronic or prolonged ingestion. These symptoms make alcohol abstinence difficult and increase the risk of relapse in recovering alcoholics. In previous studies, we demonstrated that treatment with Nociceptin/orphanin FQ (N/OFQ) significantly reduces alcohol consumption and attenuates alcohol-seeking behavior induced by environmental conditioning factors or by stress in rats. In this study, we evaluated whether activation of brain NOP receptors may also attenuate alcohol withdrawal signs in rats. METHODS: For this purpose, animals were subjected to a 6-day chronic alcohol intoxication (by intragastric administration), and at 8, 10, and 12 hours following cessation of alcohol exposure, they were treated intracerebroventricularly (ICV) with N/OFQ (0.0, 1.0, and 3.0 µg/rat). Somatic withdrawal signs were scored after ICV treatment. In a subsequent experiment, to evaluate N/OFQ effects on alcohol withdrawal-induced anxiety, another group of rats was subjected to ethanol intoxication and after 1 week was tested for anxiety behavior in the elevated plus maze (EPM). In the last experiment, an additional group of rats was tested for anxiety elicited by acute ethanol intoxication (hangover anxiety). For this purpose, animals received an acute dose (3.0 g/kg) of 20% alcohol and 12 hour later were tested in the EPM following ICV N/OFQ (0.0, 1.0, and 2.0 µg/rat). RESULTS: Results showed that N/OFQ significantly reduced the expression of somatic withdrawal signs and reversed anxiety-like behaviors associated with both chronic and acute alcohol intoxication. N/OFQ did not affect anxiety scores in nondependent animals. CONCLUSIONS: These findings suggest that the N/OFQ-NOP receptor system may represent a promising target for the development of new treatments to ameliorate alcohol withdrawal symptoms.


Assuntos
Ansiedade/tratamento farmacológico , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Neurotransmissores/farmacologia , Peptídeos Opioides/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores Opioides/agonistas , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Alcoolismo/metabolismo , Animais , Ansiedade/induzido quimicamente , Encéfalo , Depressores do Sistema Nervoso Central/sangue , Modelos Animais de Doenças , Etanol/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/metabolismo , Fatores de Tempo , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...