Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0238521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544281

RESUMO

RNases perform indispensable functions in regulating gene expression in many bacterial pathogens by processing and/or degrading RNAs. Despite the pivotal role of RNases in regulating bacterial virulence factors, the functions of RNases have not yet been studied in the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus). Here, we sought to determine the impact of two conserved RNases, the endoribonuclease RNase Y and exoribonuclease polynucleotide phosphorylase (PNPase), on the physiology and virulence of S. pneumoniae serotype 2 strain D39. We report that RNase Y and PNPase are essential for pneumococcal pathogenesis, as both deletion mutants showed strong attenuation of virulence in murine models of invasive pneumonia. Genome-wide transcriptomic analysis revealed that the abundances of nearly 200 mRNA transcripts were significantly increased, whereas those of several pneumococcal small regulatory RNAs (sRNAs), including the Ccn (CiaR-controlled noncoding RNA) sRNAs, were altered in the Δrny mutant relative to the wild-type strain. Additionally, lack of RNase Y resulted in pleiotropic phenotypes that included defects in pneumococcal cell morphology and growth in vitro. In contrast, Δpnp mutants showed no growth defect in vitro but differentially expressed a total of 40 transcripts, including the tryptophan biosynthesis operon genes and numerous 5' cis-acting regulatory RNAs, a majority of which were previously shown to impact pneumococcal disease progression in mice using the serotype 4 strain TIGR4. Together, our data suggest that RNase Y exerts a global impact on pneumococcal physiology, while PNPase mediates virulence phenotypes, likely through sRNA regulation. IMPORTANCE Streptococcus pneumoniae is a notorious human pathogen that adapts to conditions in distinct host tissues and responds to host cell interactions by adjusting gene expression. RNases are key players that modulate gene expression by mediating the turnover of regulatory and protein-coding transcripts. Here, we characterized two highly conserved RNases, RNase Y and PNPase, and evaluated their impact on the S. pneumoniae transcriptome for the first time. We show that PNPase influences the levels of a narrow set of mRNAs but a large number of regulatory RNAs primarily implicated in virulence control, whereas RNase Y has a more sweeping effect on gene expression, altering levels of transcripts involved in diverse cellular processes, including cell division, metabolism, stress response, and virulence. This study further reveals that RNase Y regulates expression of genes governing competence by mediating the turnover of CiaR-controlled noncoding (Ccn) sRNAs.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Infecções Pneumocócicas/microbiologia , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/patogenicidade , Animais , Proteínas de Bactérias/genética , Endorribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Polirribonucleotídeo Nucleotidiltransferase/genética , Streptococcus pneumoniae/genética , Virulência
2.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787043

RESUMO

By serving as intermediaries between cellular metabolism and the bioenergetic demands of proliferation, endolysosomes allow cancer cells to thrive under normally detrimental conditions. Here, we show that an endolysosomal TRP channel, TRPML1, is necessary for the proliferation of cancer cells that bear activating mutations in HRAS Expression of MCOLN1, which encodes TRPML1, is significantly elevated in HRAS-positive tumors and inversely correlated with patient prognosis. Concordantly, MCOLN1 knockdown or TRPML1 inhibition selectively reduces the proliferation of cancer cells that express oncogenic, but not wild-type, HRAS Mechanistically, TRPML1 maintains oncogenic HRAS in signaling-competent nanoclusters at the plasma membrane by mediating cholesterol de-esterification and transport. TRPML1 inhibition disrupts the distribution and levels of cholesterol and thereby attenuates HRAS nanoclustering and plasma membrane abundance, ERK phosphorylation, and cell proliferation. These findings reveal a selective vulnerability of HRAS-driven cancers to TRPML1 inhibition, which may be leveraged as an actionable therapeutic strategy.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proliferação de Células , Drosophila , Endossomos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Fosforilação , Prognóstico , Transdução de Sinais , Transcriptoma , Canais de Potencial de Receptor Transitório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...