Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(41): 8900-8915, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37794729

RESUMO

Ion transport properties and hydrogen solubility in brine play pivotal roles in various engineering and scientific scopes including chemical, physical, geochemical, and geothermal domains. Molecular dynamics simulations were performed to obtain transport properties of NaCl in the binary H2O + NaCl system using different force fields. Brine density, ion diffusivity, molar conductivity, conductivity, and hydrogen solubilities were obtained as functions of temperature and salt concentration. We compared the performance of different force fields against the experimental correlation model and developed three mathematical models. The first was the modified brine density model based on the simulated brine density over a wide range of salinity levels, and the second and third analytical mathematical models were derived for the ion diffusivity and molar conductivity as a function of salinity and temperature. The results of this study illustrated that the modified brine density model not only produced the same results of the previous model for lower salinity levels but also applied well to predict the brine density for a higher salinity level. The derived mathematical models indicated that the ion diffusivity and molar conductivity decreased linearly with salinity, and the slope and y-intercept of the lines of diffusivity and molar conductivity versus temperature were third-order polynomials of temperature. The developed models provided the mechanism for the behavior of decreasing molar conductivity with increasing salinity and increasing conductivity with increasing salinity. The directions of the effect of salinity on the molar conductivity and conductivity were opposite. The molar conductivity increased with a decreasing salinity level. However, the conductivity increased with increasing salinity, as the contribution of the ion concentration or salinity level to conductivity dominated over that of the ion movement.

2.
Sci Adv ; 6(13): eaay3314, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32232148

RESUMO

Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.

3.
Microsc Microanal ; 21(4): 961-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26021343

RESUMO

Data-constrained modeling is a method that enables three-dimensional distribution of mineral phases and porosity in a sample to be modeled based on micro-computed tomography scans acquired at different X-ray energies. Here we describe an alternative method for measuring porosity, synchrotron K-edge subtraction using xenon gas as a contrast agent. Results from both methods applied to the same Darai limestone sample are compared. Reasonable agreement between the two methods and with other porosity measurements is obtained. The possibility of a combination of data-constrained modeling and K-edge subtraction methods for more accurate sample characterization is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA