Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7965, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042825

RESUMO

Hyperbolic phonon polaritons (HPhPs) can be supported in materials where the real parts of their permittivities along different directions are opposite in sign. HPhPs offer confinements of long-wavelength light to deeply subdiffractional scales, while the evanescent field allows for interactions with substrates, enabling the tuning of HPhPs by altering the underlying materials. Yet, conventionally used noble metal and dielectric substrates restrict the tunability of this approach. To overcome this challenge, here we show that doped semiconductor substrates, e.g., InAs and CdO, enable a significant tuning effect and dynamic modulations. We elucidated HPhP tuning with the InAs plasma frequency in the near-field, with a maximum difference of 8.3 times. Moreover, the system can be dynamically modulated by photo-injecting carriers into the InAs substrate, leading to a wavevector change of ~20%. Overall, the demonstrated hBN/doped semiconductor platform offers significant improvements towards manipulating HPhPs, and potential for engineered and modulated polaritonic systems.

2.
Nano Lett ; 23(16): 7633-7641, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37558214

RESUMO

Assembling plasmonic nanocrystals in regular superlattices can produce effective optical properties not found in homogeneous materials. However, the range of these metamaterial properties is limited when a single nanocrystal composition is selected for the constituent meta-atoms. Here, we show how continuously varying doping at two length scales, the atomic and nanocrystal scales, enables tuning of both the frequency and bandwidth of the collective plasmon resonance in nanocrystal-based metasurfaces, while these features are inextricably linked in single-component superlattices. Varying the mixing ratio of indium tin oxide nanocrystals with different dopant concentrations, we use large-scale simulations to predict the emergence of a broad infrared spectral region with near-zero permittivity. Experimentally, tunable reflectance and absorption bands are observed, owing to in- and out-of-plane collective resonances. These spectral features and the predicted strong near-field enhancement establish this multiscale doping strategy as a powerful new approach to designing metamaterials for optical applications.

3.
Adv Mater ; 35(20): e2209909, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843308

RESUMO

Wavelength-selective absorbers (WS-absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography-free fabrication of WS-absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality-factors (Q-factors) and/or multiband TPP-absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q-factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q-factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow-band and nondispersive WS-absorbers are needed. Moreover, an open-source algorithm is developed to inversely design THP-absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP-absorbers can realize same spectral resonances with fewer DBR layers than a TPP-absorber, thus reducing the fabrication complexity and enabling more cost-effective, lithography-free, wafer-scale WS-absorberss for applications such as free-space communications and gas sensing.

4.
Nano Lett ; 22(18): 7358-7362, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094866

RESUMO

Antireflection (AR) coatings with graded refractive index profiles approaching air offer unparalleled AR performance but lack a scalable fabrication process that would enable them to be used more widely in applications such as architecture and solar energy conversion. This work introduces a sputtering-based sacrificial porogen process to fabricate multilayer nanoporous SiO2 coatings with tunable refractive index down to neff = 1.11. Using this approach, we demonstrate a step-graded bilayer AR coating with outstanding wide-angle AR performance (single side average reflectivity in the visible spectrum ranges from 0.2% at normal incidence to 0.7% at 40°), good adhesion, and promising environmental durability. These results open up a path to produce ultrahigh performance AR coatings over large area by using industrial-scale magnetron sputtering systems.

5.
Nat Mater ; 20(12): 1663-1669, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34675374

RESUMO

Wavelength-selective thermal emitters (WS-EMs) are of interest due to the lack of cost-effective, narrow-band sources in the mid- to long-wave infrared. WS-EMs can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors on metals. However, the design of multiple resonances is challenging as numerous structural parameters must be optimized simultaneously. Here we use stochastic gradient descent to optimize TPP emitters (TPP-EMs) composed of an aperiodic distributed Bragg reflector deposited on doped cadmium oxide (CdO) film, where layer thicknesses and carrier density are inversely designed. The combination of the aperiodic distributed Bragg reflector with the designable plasma frequency of CdO enables multiple TPP-EM modes to be simultaneously designed with arbitrary spectral control not accessible with metal-based TPPs. Using this approach, we experimentally demonstrated and numerically proposed TPP-EMs exhibiting single or multiple emission bands with designable frequencies, line-widths and amplitudes. This thereby enables lithography-free, wafer-scale WS-EMs that are complementary metal-oxide-semiconductor compatible for applications such as free-space communications and gas sensing.

6.
Nat Nanotechnol ; 16(1): 47-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169011

RESUMO

Light-matter interactions that induce charge and energy transfer across interfaces form the foundation for photocatalysis1,2, energy harvesting3 and photodetection4, among other technologies. One of the most common mechanisms associated with these processes relies on carrier injection. However, the exact role of the energy transport associated with this hot-electron injection remains unclear. Plasmon-assisted photocatalytic efficiencies can improve when intermediate insulation layers are used to inhibit the charge transfer5,6 or when off-resonance excitations are employed7, which suggests that additional energy transport and thermal effects could play an explicit role even if the charge transfer is inhibited8. This provides an additional interfacial mechanism for the catalytic and plasmonic enhancement at interfaces that moves beyond the traditionally assumed physical charge injection9-12. In this work, we report on a series of ultrafast plasmonic measurements that provide a direct measure of electronic distributions, both spatially and temporally, after the optical excitation of a metal/semiconductor heterostructure. We explicitly demonstrate that in cases of strong non-equilibrium, a novel energy transduction mechanism arises at the metal/semiconductor interface. We find that hot electrons in the metal contact transfer their energy to pre-existing free electrons in the semiconductor, without an equivalent spatiotemporal transfer of charge. Further, we demonstrate that this ballistic thermal injection mechanism can be utilized as a unique means to modulate plasmonic interactions. These experimental results are well-supported by both rigorous multilayer optical modelling and first-principle ab initio calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...