Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 4(5): 544-559, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341538

RESUMO

Monolayers of cancer-derived cell lines are widely used in the modelling of the gastrointestinal (GI) absorption of drugs and in oral drug development. However, they do not generally predict drug absorption in vivo. Here, we report a robotically handled system that uses large porcine GI tissue explants that are functionally maintained for an extended period in culture for the high-throughput interrogation (several thousand samples per day) of whole segments of the GI tract. The automated culture system provided higher predictability of drug absorption in the human GI tract than a Caco-2 Transwell system (Spearman's correlation coefficients of 0.906 and 0.302, respectively). By using the culture system to analyse the intestinal absorption of 2,930 formulations of the peptide drug oxytocin, we discovered an absorption enhancer that resulted in a 11.3-fold increase in the oral bioavailability of oxytocin in pigs in the absence of cellular disruption of the intestinal tissue. The robotically handled whole-tissue culture system should help advance the development of oral drug formulations and might also be useful for drug screening applications.


Assuntos
Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Robótica , Técnicas de Cultura de Tecidos/métodos , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Absorção Intestinal , Jejuno/fisiologia , Ocitocina/administração & dosagem , Ocitocina/farmacocinética , Ocitocina/farmacologia , Permeabilidade , Reprodutibilidade dos Testes , Suínos , Interface Usuário-Computador
2.
Sci Transl Med ; 11(483)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867322

RESUMO

Multigram drug depot systems for extended drug release could transform our capacity to effectively treat patients across a myriad of diseases. For example, tuberculosis (TB) requires multimonth courses of daily multigram doses for treatment. To address the challenge of prolonged dosing for regimens requiring multigram drug dosing, we developed a gastric resident system delivered through the nasogastric route that was capable of safely encapsulating and releasing grams of antibiotics over a period of weeks. Initial preclinical safety and drug release were demonstrated in a swine model with a panel of TB antibiotics. We anticipate multiple applications in the field of infectious diseases, as well as for other indications where multigram depots could impart meaningful benefits to patients, helping maximize adherence to their medication.


Assuntos
Antituberculosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Estômago/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Antituberculosos/farmacologia , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Doxiciclina/uso terapêutico , Sistemas de Liberação de Medicamentos/economia , Liberação Controlada de Fármacos , Humanos , Suínos
3.
Science ; 363(6427): 611-615, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733413

RESUMO

Biomacromolecules have transformed our capacity to effectively treat diseases; however, their rapid degradation and poor absorption in the gastrointestinal (GI) tract generally limit their administration to parenteral routes. An oral biologic delivery system must aid in both localization and permeation to achieve systemic drug uptake. Inspired by the leopard tortoise's ability to passively reorient, we developed an ingestible self-orienting millimeter-scale applicator (SOMA) that autonomously positions itself to engage with GI tissue. It then deploys milliposts fabricated from active pharmaceutical ingredients directly through the gastric mucosa while avoiding perforation. We conducted in vivo studies in rats and swine that support the applicator's safety and, using insulin as a model drug, demonstrated that the SOMA delivers active pharmaceutical ingredient plasma levels comparable to those achieved with subcutaneous millipost administration.


Assuntos
Administração Oral , Sistemas de Liberação de Medicamentos/instrumentação , Insulina/administração & dosagem , Substâncias Macromoleculares/administração & dosagem , Animais , Insulina/sangue , Absorção Intestinal , Substâncias Macromoleculares/sangue , Poliésteres , Ratos , Aço Inoxidável , Suínos
4.
Adv Mater Technol ; 4(3): 1800490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010758

RESUMO

Long-term implantation of biomedical electronics into the human body enables advanced diagnostic and therapeutic functionalities. However, most long-term resident electronics devices require invasive procedures for implantation as well as a specialized receiver for communication. Here, a gastric resident electronic (GRE) system that leverages the anatomical space offered by the gastric environment to enable residence of an orally delivered platform of such devices within the human body is presented. The GRE is capable of directly interfacing with portable consumer personal electronics through Bluetooth, a widely adopted wireless protocol. In contrast to the passive day-long gastric residence achieved with prior ingestible electronics, advancement in multimaterial prototyping enables the GRE to reside in the hostile gastric environment for a maximum of 36 d and maintain ≈15 d of wireless electronics communications as evidenced by the studies in a porcine model. Indeed, the synergistic integration of reconfigurable gastric-residence structure, drug release modules, and wireless electronics could ultimately enable the next-generation remote diagnostic and automated therapeutic strategies.

5.
Sci Rep ; 8(1): 11816, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087406

RESUMO

Gastric resident dosage forms have been used successfully in farm animals for the delivery of a variety of drugs helping address the challenge of extended dosing. Despite these advances, there remains a significant challenge across the range of species with large variation in body size. To address this, we investigate a scalable gastric resident platform capable of prolonged retention. We investigate prototypes in dimensions consistent with administration and retention in the stomachs of two species (rabbit and pig). We investigate sustained gastric retention of our scalable dosage form platform, and in pigs show the capacity to modulate drug release kinetics of a model drug in veterinary practice, meloxicam, with our dosage form. The ability to achieve gastric residence and thereby enable sustained drug levels across different species may have a significant impact in the welfare of animals in both research, agricultural, zoological, and clinical practice settings.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Trato Gastrointestinal/metabolismo , Meloxicam/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Feminino , Cinética , Meloxicam/farmacocinética , Coelhos , Suínos , Medicina Veterinária/métodos
6.
Nat Commun ; 9(1): 2, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317618

RESUMO

The efficacy of antiretroviral therapy is significantly compromised by medication non-adherence. Long-acting enteral systems that can ease the burden of daily adherence have not yet been developed. Here we describe an oral dosage form composed of distinct drug-polymer matrices which achieved week-long systemic drug levels of the antiretrovirals dolutegravir, rilpivirine and cabotegravir in a pig. Simulations of viral dynamics and patient adherence patterns indicate that such systems would significantly reduce therapeutic failures and epidemiological modelling suggests that using such an intervention prophylactically could avert hundreds of thousands of new HIV cases. In sum, weekly administration of long-acting antiretrovirals via a novel oral dosage form is a promising intervention to help control the HIV epidemic worldwide.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Piridonas/administração & dosagem , Rilpivirina/administração & dosagem , Administração Oral , Animais , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Modelos Teóricos , Oxazinas , Cooperação do Paciente , Piperazinas , Estudo de Prova de Conceito , Piridonas/farmacocinética , Piridonas/uso terapêutico , Rilpivirina/farmacocinética , Rilpivirina/uso terapêutico , Suínos
7.
J Control Release ; 268: 113-119, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29051063

RESUMO

Ultrasound-mediated drug delivery in the gastrointestinal (GI) tract is a bourgeoning area of study. Localized, low-frequency ultrasound has recently been shown to enable significant enhancement in delivery of a broad set of active pharmaceutical ingredients including small molecules, proteins, and nucleic acids without any formulation or encapsulation of the therapeutic. Traditional chemical formulations are typically required to protect, stabilize, and enable the successful delivery of a given therapeutic. The use of ultrasound, however, may make delivery insensitive to the chemical formulation. This might open the door to chemical formulations being developed to address other properties besides the deliverability of a therapeutic. Instead, chemical formulations could potentially be developed to achieve novel pharmacokinetics, without consideration of that particular formulation's ability to penetrate the mucus barrier passively. Here we investigated the effect of permeant size, charge, and the presence of chemical penetration enhancers on delivery to GI tissue using ultrasound. Short ultrasound treatments enabled delivery of large permeants, including microparticles, deep into colonic tissue ex vivo. Delivery was relatively independent of size and charge but did depend on conformation, with regular, spherical particles being delivered to a greater extent than long-chain polymers. The subsequent residence time of model permeants in tissue after ultrasound-mediated delivery was found to depend on size, with large microparticles demonstrating negligible clearance from the local tissue 24h after delivery ex vivo. The dependence of clearance time on permeant size was further confirmed in vivo in mice using fluorescently labeled 3kDa and 70kDa dextran. The use of low-frequency ultrasound in the GI tract represents a novel tool for the delivery of a wide-range of therapeutics independent of formulation, potentially allowing for the tailoring of formulations to impart novel pharmacokinetic profiles once delivered into tissue.


Assuntos
Colo/metabolismo , Sistemas de Liberação de Medicamentos , Ondas Ultrassônicas , Animais , Colo/ultraestrutura , Dextranos/administração & dosagem , Feminino , Absorção Intestinal , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microesferas , Permeabilidade , Suínos
8.
Nat Commun ; 8(1): 124, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743858

RESUMO

Systems capable of residing for prolonged periods of time in the gastric cavity have transformed our ability to diagnose and treat patients. Gastric resident systems for drug delivery, ideally need to be: ingestible, be able to change shape or swell to ensure prolonged gastric residence, have the mechanical integrity to withstand the forces associated with gastrointestinal motility, be triggerable to address any side effects, and be drug loadable and release drug over a prolonged period of time. Materials that have been primarily utilized for these applications have been largely restricted to thermoplastics and thermosets. Here we describe a novel set of materials, triggerable tough hydrogels, meeting all these requirement, supported by evaluation in a large animal model and ultimately demonstrate the potential of triggerable tough hydrogels to serve as prolonged gastric resident drug depots. Triggerable tough hydrogels may be applied in myriad of applications, including bariatric interventions, drug delivery, and tissue engineering.The use of drug delivery systems for the gastrointestinal tract has been faced with a number of drawbacks related to their prolonged use. Here, the authors develop a drug-loaded hydrogel with high strength to withstand long-term gastrointestinal motility and can be triggered to dissolve on demand.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Mucosa Gástrica/metabolismo , Hidrogéis/química , Preparações Farmacêuticas/administração & dosagem , Resinas Acrílicas/química , Alginatos/química , Algoritmos , Animais , Células Cultivadas , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Teste de Materiais , Preparações Farmacêuticas/química , Suínos
9.
Artigo em Inglês | MEDLINE | ID: mdl-28458955

RESUMO

Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 µW per mm2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.

10.
Sci Rep ; 7: 46745, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447624

RESUMO

Electronic devices placed in the gastrointestinal (GI) tract for prolonged periods have the potential to transform clinical evaluation and treatment. One challenge to the deployment of such gastroresident electronics is the difficulty in powering millimeter-sized electronics devices without using batteries, which compromise biocompatibility and long-term residence. We examined the feasibility of leveraging mid-field wireless powering to transfer power from outside of the body to electronics at various locations along the GI tract. Using simulations and ex vivo measurements, we designed mid-field antennas capable of operating efficiently in tissue at 1.2 GHz. These antennas were then characterized in vivo in five anesthetized pigs, by placing one antenna outside the body, and the other antenna inside the body endoscopically, at the esophagus, stomach, and colon. Across the animals tested, mean transmission efficiencies of -41.2, -36.1, and -34.6 dB were achieved in vivo while coupling power from outside the body to the esophagus, stomach, and colon, respectively. This corresponds to power levels of 37.5 µW, 123 µW and 173 µW received by antennas in the respective locations, while keeping radiation exposure levels below safety thresholds. These power levels are sufficient to wirelessly power a range of medical devices from outside of the body.


Assuntos
Eletrônica/métodos , Desenho de Equipamento/métodos , Trato Gastrointestinal , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Animais , Fontes de Energia Elétrica , Eletrônica/instrumentação , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Endoscopia Gastrointestinal , Desenho de Equipamento/instrumentação , Feminino , Humanos , Miniaturização , Reprodutibilidade dos Testes , Suínos
11.
Gastroenterology ; 152(5): 1151-1160, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28088460

RESUMO

BACKGROUND & AIMS: It is a challenge to deliver nucleic acids to gastrointestinal (GI) tissues due to their size and need for intracellular delivery. They are also extremely susceptible to degradation by nucleases, which are ubiquitous in the GI tract. We investigated whether ultrasound, which can permeabilize tissue through a phenomenon known as transient cavitation, can be used to deliver RNA to the colonic mucosa of living mice. METHODS: We investigated delivery of fluorescently labeled permeants to colon tissues of Yorkshire pigs ex vivo and mice in vivo. Colon tissues were collected and fluorescence was measured by confocal microscopy. We then evaluated whether ultrasound is effective in delivering small interfering (si)RNA to C57BL/6 mice with dextran sodium sulfate-induced colitis. Some mice were given siRNA against tumor necrosis factor (Tnf) mRNA for 6 days; colon tissues were collected and analyzed histologically and TNF protein levels measured by enzyme-linked immunosorbent assay. Feces were collected and assessed for consistency and occult bleeding. We delivered mRNA encoding firefly luciferase to colons of healthy C57BL/6 mice. RESULTS: Exposure of ex vivo pig colon tissues to 20 kHz ultrasound for 1 minute increased the level of delivery of 3 kDa dextran 7-fold compared with passive diffusion (P = .037); 40 kHz ultrasound application for 0.5 seconds increased the delivery 3.3-fold in living mice (P = .041). Confocal microscopy analyses of colon tissues from pigs revealed regions of punctuated fluorescent dextran signal, indicating intracellular delivery of macromolecules. In mice with colitis, ultrasound delivery of unencapsulated siRNA against Tnf mRNA reduced protein levels of TNF in colon tissues, compared with mice with colitis given siRNA against Tnf mRNA without ultrasound (P ≤ .014), and reduced features of inflammation (P ≤ 4.1 × 10-5). Separately, colons of mice administered an mRNA encoding firefly luciferase with ultrasound and the D-luciferin substrate had levels of bioluminescence 11-fold greater than colons of mice given the mRNA alone (P = .0025). Ultrasound exposures of 40 kHz ultrasound for 0.5 seconds were well tolerated, even in mice with acute colitis. CONCLUSIONS: Ultrasound can be used to deliver mRNAs and siRNAs to the colonic mucosa of mice and knock down expression of target mRNAs.


Assuntos
Colite/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidade , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Ultrassonografia/métodos , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Sistemas de Liberação de Medicamentos , Luciferases de Vaga-Lume/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Sus scrofa , Suínos , Fator de Necrose Tumoral alfa/metabolismo
12.
Nat Biomed Eng ; 1(10): 807-817, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31015594

RESUMO

Improvements in ingestible electronics with the capacity to sense physiological and pathophysiological states have transformed the standard of care for patients. Yet, despite advances in device development, significant risks associated with solid, non-flexible gastrointestinal transiting systems remain. Here, we report the design and use of an ingestible, flexible piezoelectric device that senses mechanical deformation within the gastric cavity. We demonstrate the capabilities of the sensor in both in vitro and ex vivo simulated gastric models, quantify its key behaviours in the gastrointestinal tract using computational modelling and validate its functionality in awake and ambulating swine. Our proof-of-concept device may lead to the development of ingestible piezoelectric devices that might safely sense mechanical variations and harvest mechanical energy inside the gastrointestinal tract for the diagnosis and treatment of motility disorders, as well as for monitoring ingestion in bariatric applications.

13.
Sci Transl Med ; 8(365): 365ra157, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27856796

RESUMO

Efforts at elimination of scourges, such as malaria, are limited by the logistic challenges of reaching large rural populations and ensuring patient adherence to adequate pharmacologic treatment. We have developed an oral, ultra-long-acting capsule that dissolves in the stomach and deploys a star-shaped dosage form that releases drug while assuming a geometry that prevents passage through the pylorus yet allows passage of food, enabling prolonged gastric residence. This gastric-resident, drug delivery dosage form releases small-molecule drugs for days to weeks and potentially longer. Upon dissolution of the macrostructure, the components can safely pass through the gastrointestinal tract. Clinical, radiographic, and endoscopic evaluation of a swine large-animal model that received these dosage forms showed no evidence of gastrointestinal obstruction or mucosal injury. We generated long-acting formulations for controlled release of ivermectin, a drug that targets malaria-transmitting mosquitoes, in the gastric environment and incorporated these into our dosage form, which then delivered a sustained therapeutic dose of ivermectin for up to 14 days in our swine model. Further, by using mathematical models of malaria transmission that incorporate the lethal effect of ivermectin against malaria-transmitting mosquitoes, we demonstrated that this system will boost the efficacy of mass drug administration toward malaria elimination goals. Encapsulated, gastric-resident dosage forms for ultra-long-acting drug delivery have the potential to revolutionize treatment options for malaria and other diseases that affect large populations around the globe for which treatment adherence is essential for efficacy.


Assuntos
Antimaláricos/administração & dosagem , Sistemas de Liberação de Medicamentos , Ivermectina/administração & dosagem , Malária/tratamento farmacológico , Estômago/efeitos dos fármacos , Administração Oral , Animais , Cápsulas , Culicidae , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Endoscopia , Análise de Elementos Finitos , Humanos , Malária/transmissão , Modelos Teóricos , Polímeros/química , Suínos
14.
Biomed Opt Express ; 7(8): 2927-42, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27570688

RESUMO

We demonstrate a micromotor balloon imaging catheter for ultrahigh speed endoscopic optical coherence tomography (OCT) which provides wide area, circumferential structural and angiographic imaging of the esophagus without contrast agents. Using a 1310 nm MEMS tunable wavelength swept VCSEL light source, the system has a 1.2 MHz A-scan rate and ~8.5 µm axial resolution in tissue. The micromotor balloon catheter enables circumferential imaging of the esophagus at 240 frames per second (fps) with a ~30 µm (FWHM) spot size. Volumetric imaging is achieved by proximal pullback of the micromotor assembly within the balloon at 1.5 mm/sec. Volumetric data consisting of 4200 circumferential images of 5,000 A-scans each over a 2.6 cm length, covering a ~13 cm(2) area is acquired in <18 seconds. A non-rigid image registration algorithm is used to suppress motion artifacts from non-uniform rotational distortion (NURD), cardiac motion or respiration. En face OCT images at various depths can be generated. OCT angiography (OCTA) is computed using intensity decorrelation between sequential pairs of circumferential scans and enables three-dimensional visualization of vasculature. Wide area volumetric OCT and OCTA imaging of the swine esophagus in vivo is demonstrated.

15.
Nat Mater ; 14(10): 1065-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213897

RESUMO

Devices resident in the stomach-used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery-typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.


Assuntos
Sistemas de Liberação de Medicamentos , Elastômeros , Polímeros/química , Estômago/efeitos dos fármacos , Animais , Eletrônica , Esôfago/efeitos dos fármacos , Trânsito Gastrointestinal/fisiologia , Géis/química , Humanos , Concentração de Íons de Hidrogênio , Suínos , Comprimidos , Tecnologia Farmacêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...