Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 34(2): e2940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212051

RESUMO

Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20-year responses to thinning and prescribed burning treatments commonly used in dry, low-elevation forests of the western United States from a long-term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short-term (<4 years) and mid-term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak that impacted the site 5-10 years post-treatment and describe 20-year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning+prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control. Aboveground live carbon stocks in thinning treatments recovered to near control and prescribed fire treatment levels by 20 years. The prescribed fire treatment and control had higher fuel loads than thinning treatments due to interactions with the MPB outbreak. The MPB-induced changes to forest structure and fuels increased the fire hazard 20 years post-treatment in the control and prescribed fire treatment. Should a wildfire occur now, the thinning+prescribed fire treatment would likely have the lowest intensity fire and highest tree survival and stable carbon stocks. Our findings show broad support that thinning and prescribed fire increase ponderosa pine forest resilience to both wildfire and bark beetles for up to 20 years, but efficacy is waning and additional fuel treatments are needed to maintain resilience.


Assuntos
Ecossistema , Incêndios Florestais , Animais , Florestas , Árvores , Carbono , Pinus ponderosa
2.
Ecology ; 104(2): e3909, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326547

RESUMO

Plant element stoichiometry and stoichiometric flexibility strongly regulate ecosystem responses to global change. Here, we tested three potential mechanistic drivers (climate, soil nutrients, and plant taxonomy) of both using paired foliar and soil nutrient data from terrestrial forested National Ecological Observatory Network sites across the USA. We found that broad patterns of foliar nitrogen (N) and foliar phosphorus (P) are explained by different mechanisms. Plant taxonomy was an important control over all foliar nutrient stoichiometries and concentrations, especially foliar N, which was dominantly related to taxonomy and did not vary across climate or soil gradients. Despite a lack of site-level correlations between N and environment variables, foliar N exhibited intraspecific flexibility, with numerous species-specific correlations between foliar N and various environmental factors, demonstrating the variable spatial and temporal scales on which foliar chemistry and stoichiometric flexibility can manifest. In addition to plant taxonomy, foliar P and N:P ratios were also linked to soil nutrient status (extractable P) and climate, especially actual evapotranspiration rates. Our findings highlight the myriad factors that influence foliar chemistry and show that broad patterns cannot be explained by a single consistent mechanism. Furthermore, differing controls over foliar N versus P suggests that each may be sensitive to global change drivers on distinct spatial and temporal scales, potentially resulting in altered ecosystem N:P ratios that have implications for processes ranging from productivity to carbon sequestration.


Assuntos
Ecossistema , Florestas , Estados Unidos , Nitrogênio/análise , Solo , Clima , Fósforo/análise , Folhas de Planta/química
3.
ISME J ; 16(11): 2467-2478, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35871251

RESUMO

Soil biota can determine plant invasiveness, yet biogeographical comparisons of microbial community composition and function across ranges are rare. We compared interactions between Conyza canadensis, a global plant invader, and arbuscular mycorrhizal (AM) fungi in 17 plant populations in each native and non-native range spanning similar climate and soil fertility gradients. We then grew seedlings in the greenhouse inoculated with AM fungi from the native range. In the field, Conyza plants were larger, more fecund, and associated with a richer community of more closely related AM fungal taxa in the non-native range. Fungal taxa that were more abundant in the non-native range also correlated positively with plant biomass, whereas taxa that were more abundant in the native range appeared parasitic. These patterns persisted when populations from both ranges were grown together in a greenhouse; non-native populations cultured a richer and more diverse AM fungal community and selected AM fungi that appeared to be more mutualistic. Our results provide experimental support for evolution toward enhanced mutualism in non-native ranges. Such novel relationships and the rapid evolution of mutualisms may contribute to the disproportionate abundance and impact of some non-native plant species.


Assuntos
Micobioma , Micorrizas , Raízes de Plantas , Plantas , Solo , Microbiologia do Solo , Simbiose
4.
Proc Biol Sci ; 286(1894): 20182504, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963857

RESUMO

Though tropical forest ecosystems are among the largest natural sources of the potent greenhouse gas nitrous oxide (N2O), the spatial distribution of emissions across landscapes is often poorly resolved. Leaf cutter ants (LCA; Atta and Acromyrmex, Myrmicinae) are dominant herbivores throughout Central and South America, and influence multiple aspects of forest structure and function. In particular, their foraging creates spatial heterogeneity by concentrating large quantities of organic matter (including nitrogen, N) from the surrounding canopy into their colonies, and ultimately into colony refuse dumps. Here, we demonstrate that refuse piles created by LCA species Atta colombica in tropical rainforests of Costa Rica provide ideal conditions for extremely high rates of N2O production (high microbial biomass, potential denitrification enzyme activity, N content and anoxia) and may represent an unappreciated source of heterogeneity in tropical forest N2O emissions. Average instantaneous refuse pile N2O fluxes surpassed background emissions by more than three orders of magnitude (in some cases exceeding 80 000 µg N2O-N m-2 h-1) and generating fluxes comparable to or greater than those produced by engineered systems such as wastewater treatment tanks. Refuse-concentrating Atta species are ubiquitous in tropical forests, pastures and production ecosystems, and increase density strongly in response to disturbance. As such, LCA colonies may represent an unrecognized greenhouse gas point source throughout the Neotropics.


Assuntos
Formigas/fisiologia , Óxido Nitroso/análise , Floresta Úmida , Solo/química , Animais , Costa Rica , Comportamento Alimentar
5.
Ecology ; 100(3): e02589, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30801709

RESUMO

Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though the sum of litterfall and stem growth (ANPP) did not differ between regions, both stem growth and the ratio of stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo- and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall-statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.


Assuntos
Florestas , Clima Tropical , África , Ásia , Biomassa , Carbono/análise , América do Sul , Árvores
6.
Ecology ; 100(4): e02641, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712256

RESUMO

High rates of land conversion and land use change have vastly increased the proportion of secondary forest in the lowland tropics relative to mature forest. As secondary forests recover following abandonment, nitrogen (N) and phosphorus (P) must be present in sufficient quantities to sustain high rates of net primary production and to replenish the nutrients lost during land use prior to secondary forest establishment. Biogeochemical theory and results from individual studies suggest that N can recuperate during secondary forest recovery, especially relative to P. Here, we synthesized 23 metrics of N and P in soil and plants from 45 secondary forest chronosequences located in the wet tropics to empirically explore (1) whether there is a consistent change in nutrients and nutrient cycling processes during secondary succession in the biome; (2) which metrics of N and P in soil and plants recuperate most consistently; (3) if the recuperation of nutrients during succession approaches similar nutrient concentrations and fluxes as those in mature forest in ~100 yr following the initiation of succession; and (4) whether site characteristics, including disturbance history, climate, and soil order are significantly related to nutrient recuperation. During secondary forest succession, nine metrics of N and/or P cycling changed consistently and substantially. In most sites, N concentrations and fluxes in both plants and soil increased during secondary succession, and total P concentrations increased in surface soil. Changes in nutrient concentrations and nutrient cycling processes during secondary succession were similar whether mature forest was included or excluded from the analysis, indicating that nutrient recuperation in secondary forest leads to biogeochemical conditions that are similar to those of mature forest. Further, of the N and P metrics that recuperated, only soil total P and foliar δ15 N were strongly influenced by site characteristics like climate, soils, or disturbance history. Predictable nutrient recuperation across a diverse and productive ecosystem may support future forest growth and could provide a means to quantify successful restoration of ecosystem function in secondary tropical forest beyond biomass or species composition.


Assuntos
Ecossistema , Árvores , Florestas , Nitrogênio , Fósforo , Solo , Clima Tropical
7.
Ecology ; 100(4): e02646, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714149

RESUMO

Tropical forests play a dominant role in the global carbon (C) cycle, and models predict increases in tropical net primary productivity (NPP) and C storage in response to rising atmospheric carbon dioxide (CO2 ) concentrations. The extent to which increasing CO2 will enhance NPP depends in part on the availability of nitrogen (N) and phosphorus (P) to support growth. Some tropical trees can potentially overcome nutrient limitation by acquiring N via symbiotic dinitrogen (N2 ) fixation, which may provide a benefit in acquiring P via investment in N-rich phosphatase enzymes or arbuscular mycorrhizal (AM) fungi. We conducted a seedling experiment to investigate the effects of elevated CO2 and soil nutrient availability on the growth of two N2 -fixing and two non-N2 -fixing tropical tree species. We hypothesized that under elevated CO2 and at low nutrient availability (i.e., low N and P), N2 fixers would have higher growth rates than non-N2 fixers because N2 fixers have a greater capacity to acquire both N and P. We also hypothesized that differences in growth rates between N2 fixers and non-N2 fixers would decline as nutrient availability increases because N2 fixers no longer have an advantage in nutrient acquisition. We found that the N2 fixers had higher growth rates than the non-N2 fixers under elevated CO2 and at low nutrient availability, and that the difference in growth rates between the N2 and non-N2 fixers declined as nutrient availability increased, irrespective of CO2 . Overall, N2 fixation, root phosphatase activity, and AM colonization decreased with increasing nutrient availability, and increased under elevated CO2 at low nutrient availability. Further, AM colonization was positively related to the growth of the non-N2 fixers, whereas both N2 fixation and root phosphatase activity were positively related to the growth of the N2 fixers. Though our results indicate all four tree species have the capacity to up- or down-regulate nutrient acquisition to meet their stoichiometric demands, the greater capacity for the N2 fixers to acquire both N and P may enable them to overcome nutritional constraints to NPP under elevated CO2 , with implications for the response of tropical forests to future environmental change.


Assuntos
Solo , Árvores , Dióxido de Carbono , Nitrogênio , Fixação de Nitrogênio , Nutrientes
8.
Sci Total Environ ; 654: 463-472, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447585

RESUMO

Biochar is a carbon (C) rich product of thermochemical conversion of organic material that is used as a soil amendment due to its resistance to decomposition and its influence on nutrient dynamics; however, individual studies on biochar effects on phosphorus (P) and nitrogen (N) have proven inconsistent. Herein, we performed a meta-analysis of 124 published studies to evaluate the influence of biochar on available P, microbial biomass P (MBP), and inorganic N (NO3--N and NH4+-N) in global agricultural ecosystems. Overall, the results showed that biochar applications significantly increased surface soil available P by 45% and MBP by 48% across the full range of biochar characteristics, soil type, or experimental conditions. By contrast, biochar addition to soil reduced NO3--N concentrations by 12% and NH4+-N by 11%, but in most cases biochar added in combination with organic fertilizer significantly increased soil NH4+-N compared to controls. Biochar C:N ratio and biochar source (feedstock) strongly influenced soil P availability response to biochar where inorganic N was most influenced by biochar C:N ratio and soil pH. Biochar made from manure or other low C:N ratio materials, generated at low temperatures, or applied at high rates were generally more effective at enhancing soil available P. It is important, however, to note that most negative results were observed in short-term (<6 months) where long-term studies (>12 months) tended to result in neutral to modest positive effects on both P and N. This meta-analysis indicates that biochar generally enhances soil P availability when added to soils alone or in combination with fertilizer. These findings provide a scientific basis for developing more rational strategies toward widespread adoption of biochar as a soil amendment for agricultural P and N management.


Assuntos
Agricultura , Biomassa , Carvão Vegetal/análise , Fertilizantes/análise , Nitrogênio/análise , Fósforo/análise , Compostos de Amônio/análise , Disponibilidade Biológica , Carvão Vegetal/administração & dosagem , Nitratos/análise , Microbiologia do Solo
9.
Ecology ; 99(9): 2080-2089, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29931744

RESUMO

Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N2 O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N2 O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40-70 individual trees) in which average remotely-sensed canopy N fell above or below the regional mean. The plots were located on a single minimally-dissected terrace (<1 km2 ) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N2 O fluxes monthly for 1 yr and found that high canopy N species assemblages had on average three-fold higher total mean N2 O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two-fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia-oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N2 O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant-available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely-sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N2 O emissions in heterogeneous landscapes.


Assuntos
Nitrogênio/análise , Óxido Nitroso , Ecossistema , Floresta Úmida , Solo/química
10.
Sci Adv ; 4(5): eaaq0942, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29806022

RESUMO

Current models of ecosystem development hold that low nitrogen availability limits the earliest stages of primary succession, but these models were developed from studies conducted in areas with temperate or wet climates. Global warming is now causing rapid glacial retreat even in inland areas with cold, dry climates, areas where ecological succession has not been adequately studied. We combine field and microcosm studies of both plant and microbial primary producers and show that phosphorus, not nitrogen, is the nutrient most limiting to the earliest stages of primary succession along glacial chronosequences in the Central Andes and central Alaska. We also show that phosphorus addition greatly accelerates the rate of succession for plants and for microbial phototrophs, even at the most extreme deglaciating site at over 5000 meters above sea level in the Andes of arid southern Peru. These results challenge the idea that nitrogen availability and a severe climate limit the rate of plant and microbial succession in cold-arid regions and will inform conservation efforts to mitigate the effects of global change on these fragile and threatened ecosystems.


Assuntos
Microbiologia Ambiental , Camada de Gelo , Nitrogênio , Fósforo , Plantas , Ecossistema , Peru
11.
Oecologia ; 185(3): 513-524, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28983721

RESUMO

A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.


Assuntos
Ecossistema , Nitrogênio/química , Fósforo/química , Microbiologia do Solo , Solo/química , Alaska , Alimentos , Camada de Gelo , Peru , Filogenia , Washington
12.
Ecol Lett ; 20(6): 779-788, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28414883

RESUMO

Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth.


Assuntos
Ciclo do Carbono , Temperatura , Clima Tropical , Carbono , Florestas , Solo , Árvores
13.
New Phytol ; 214(4): 1506-1517, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28262951

RESUMO

We hypothesized that dinitrogen (N2 )- and non-N2 -fixing tropical trees would have distinct phosphorus (P) acquisition strategies allowing them to exploit different P sources, reducing competition. We measured root phosphatase activity and arbuscular mycorrhizal (AM) colonization among two N2 - and two non-N2 -fixing seedlings, and grew them alone and in competition with different inorganic and organic P forms to assess potential P partitioning. We found an inverse relationship between root phosphatase activity and AM colonization in field-collected seedlings, indicative of a trade-off in P acquisition strategies. This correlated with the predominantly exploited P sources in the seedling experiment: the N2 fixer with high N2 fixation and root phosphatase activity grew best on organic P, whereas the poor N2 fixer and the two non-N2 fixers with high AM colonization grew best on inorganic P. When grown in competition, however, AM colonization, root phosphatase activity and N2 fixation increased in the N2 fixers, allowing them to outcompete the non-N2 fixers regardless of P source. Our results indicate that some tropical trees have the capacity to partition soil P, but this does not eliminate interspecific competition. Rather, enhanced P and N acquisition strategies may increase the competitive ability of N2 fixers relative to non-N2 fixers.


Assuntos
Fósforo/metabolismo , Floresta Úmida , Solo/química , Árvores/fisiologia , Costa Rica , Fabaceae/fisiologia , Moraceae/fisiologia , Micorrizas , Fixação de Nitrogênio , Monoéster Fosfórico Hidrolases/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plântula/fisiologia , Especificidade da Espécie , Clima Tropical
14.
Ecol Appl ; 26(8): 2449-2462, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27874999

RESUMO

Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and partial least squares regression to quantify canopy foliar nitrogen (foliar N) across ~164 km2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of foliar N using a gradient boosting model technique. At a local scale, where climate and substrate were constant, we explored the influence of slope position on foliar N by quantifying foliar N on remnant terraces, their adjacent slopes, and knife-edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting foliar N. Observed foliar N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting foliar N (30% and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the field collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in foliar N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function.


Assuntos
Nitrogênio , Folhas de Planta , Costa Rica , Florestas , Árvores , Clima Tropical
15.
Ecol Appl ; 26(5): 1503-1516, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27755759

RESUMO

Decades of fire suppression following extensive timber harvesting have left much of the forest in the intermountain western United States exceedingly dense, and forest restoration techniques (i.e., thinning and prescribed fire) are increasingly being used in an attempt to mitigate the effects of severe wildfire, to enhance tree growth and regeneration, and to stimulate soil nutrient cycling. While many of the short-term effects of forest restoration have been established, the long-term effects on soil biogeochemical and ecosystem processes are largely unknown. We assessed the effects of commonly used forest restoration treatments (thinning, burning, and thinning + burning) on nutrient cycling and other ecosystem processes 11 yr after restoration treatments were implemented in a ponderosa pine (Pinus ponderosa var. scopulorum)/Douglas fir (Pseudotsuga menziesii var. glauca) forest at the Lubrecht Fire and Fire Surrogates Study (FFS) site in western Montana, USA. Despite short-term (<3 yr) increases in soil inorganic nitrogen (N) pools and N cycling rates following prescribed fire, long-term soil N pools and N mineralization rates showed only subtle differences from untreated control plots. Similarly, despite a persistent positive correlation between fuels consumed in prescribed burns and several metrics of N cycling, variability in inorganic N pools decreased significantly since treatments were implemented, indicating a decline in N spatial heterogeneity through time. However, rates of net nitrification remain significantly higher in a thin + burn treatment relative to other treatments. Short-term declines in forest floor carbon (C) pools have persisted in the thin + burn treatment, but there were no significant long-term differences among treatments in extractable soil phosphorus (P). Finally, despite some short-term differences, long-term foliar nutrient concentrations, litter decomposition rates, and rates of free-living N fixation in the experimental plots were not different from control plots, suggesting nutrient cycles and ecosystem processes in temperate coniferous forests are resilient to disturbance following long periods of fire suppression. Overall, this study provides forest managers and policymakers valuable information showing that the effects of these commonly used restoration prescriptions on soil nutrient cycling are ephemeral and that use of repeated treatments (i.e., frequent fire) will be necessary to ensure continued restoration success.


Assuntos
Ciclo do Carbono , Recuperação e Remediação Ambiental , Florestas , Ciclo do Nitrogênio , Solo/química , Traqueófitas , Canadá , Carbono/química , Nitrogênio/química , Fatores de Tempo
16.
Ecology ; 96(5): 1229-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26236837

RESUMO

Observations of high dissolved inorganic nitrogen (DIN) concentrations in stream water have reinforced the notion that primary tropical rain forests cycle nitrogen (N) in relative excess compared to phosphorus. Here we test this notion by evaluating hydrologic N export from a small watershed on the Osa Peninsula, Costa Rica, where prior research has shown multiple indicators of conservative N cycling throughout the ecosystem. We repeatedly measured a host of factors known to influence N export for one year, including stream water chemistry and upslope litterfall, soil N availability and net N processing rates, and soil solution chemistry at the surface, 15- and 50-cm depths. Contrary to prevailing assumptions about the lowland N cycle, we find that dissolved organic nitrogen (DON) averaged 85% of dissolved N export for 48 of 52 consecutive weeks. For most of the year stream water nitrate (NO3-) export was very low, which reflected minimal net N processing and DIN leaching from upslope soils. Yet, for one month in the dry season, NO3- was the major component of N export due to a combination of low flows and upslope nitrification that concentrated NO3- in stream water. Particulate organic N (PON) export was much larger than dissolved forms at 14.6 kg N x ha(-1) x yr(-1), driven by soil erosion during storms. At this rate, PON export was slightly greater than estimated inputs from free-living N fixation and atmospheric N deposition, which suggests that erosion-driven PON export could constrain ecosystem level N stocks over longer timescales. This phenomenon is complimentary to the "DON leak" hypothesis, which postulates that the long-term accumulation of ecosystem N in unpolluted ecosystems is constrained by the export of organic N independently of biological N demand. Using an established global sediment generation model, we illustrate that PON erosion may be an important vector for N loss in tropical landscapes that are geomorphically active. This study supports an emerging view that landscape geomorphology influences nutrient biogeochemistry and limitation, though more research is needed to understand the mechanisms and spatial significance of erosional N loss from terrestrial ecosystems.


Assuntos
Ecossistema , Nitrogênio/química , Clima Tropical , Movimentos da Água , Animais , Costa Rica , Sedimentos Geológicos , Chuva , Estações do Ano , Solo/química , Fatores de Tempo
17.
Ecol Lett ; 17(10): 1282-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070023

RESUMO

Paradoxically, symbiotic dinitrogen (N2 ) fixers are abundant in nitrogen (N)-rich, phosphorus (P)-poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N-rich enzymes (phosphatases) that mineralise organic P than non-N2 fixers. We assessed soil and root phosphatase activity between fixers and non-fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non-fixers. Root phosphatase activity and AM colonisation were higher for fixers than non-fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N-P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.


Assuntos
Florestas , Micorrizas/fisiologia , Fixação de Nitrogênio , Fósforo/metabolismo , Raízes de Plantas/enzimologia , Solo/química , Costa Rica , Monoéster Fosfórico Hidrolases/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Clima Tropical
18.
PLoS One ; 9(7): e102609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050551

RESUMO

The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important drivers of plant succession--affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.


Assuntos
Microbiota/genética , Fertilizantes , Camada de Gelo , Tipagem Molecular , Peru , Filogenia , Microbiologia do Solo
19.
Ecology ; 95(3): 668-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24804451

RESUMO

Quantifying nutrient limitation of primary productivity is a fundamental task of terrestrial ecosystem ecology, but in a high carbon dioxide environment it is even more critical that we understand potential nutrient constraints on plant growth. Ecologists often manipulate nutrients with fertilizer to assess nutrient limitation, yet for a variety of reasons, nutrient fertilization experiments are either impractical or incapable of resolving ecosystem responses to some global changes. The challenges of conducting large, in situ fertilization experiments are magnified in forests, especially the high-diversity forests common throughout the lowland tropics. A number of methods, including fertilization experiments, could be seen as tools in a toolbox that ecologists may use to attempt to assess nutrient limitation, but there has been no compilation or synthetic discussion of those methods in the literature. Here, we group these methods into one of three categories (indicators of soil nutrient supply, organismal indicators of nutrient limitation, and lab-based experiments and nutrient depletions), and discuss some of the strengths and limitations of each. Next, using a case study, we compare nutrient limitation assessed using these methods to results obtained using large-scale fertilizations across the Hawaiian Archipelago. We then explore the application of these methods in high-diversity tropical forests. In the end, we suggest that, although no single method is likely to predict nutrient limitation in all ecosystems and at all scales, by simultaneously utilizing a number of the methods we describe, investigators may begin to understand nutrient limitation in complex and diverse ecosystems such as tropical forests. In combination, these methods represent our best hope for understanding nutrient constraints on the global carbon cycle, especially in tropical forest ecosystems.


Assuntos
Ecossistema , Fertilizantes , Solo , Árvores , Animais , Monitoramento Ambiental , Havaí , Projetos de Pesquisa , Fatores de Tempo , Clima Tropical
20.
Proc Natl Acad Sci U S A ; 111(22): 8101-6, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843146

RESUMO

Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.


Assuntos
Ecossistema , Fabaceae/metabolismo , Ciclo do Nitrogênio , Fixação de Nitrogênio , Árvores , Agricultura , Biomassa , Costa Rica , Meio Ambiente , Atividades Humanas , Humanos , Modelos Teóricos , Simbiose , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA