Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 9(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30424209

RESUMO

We propose the use of a diamond waveguide structure to enhance the sensitivity of magnetometers relying on the detection of the spin state of nitrogen-vacancy ensembles in diamond by infrared optical absorption. An optical waveguide structure allows for enhanced optical path-lengths avoiding the use of optical cavities and complicated setups. The presented design for diamond-based magnetometers enables miniaturization while maintaining high sensitivity and forms the basis for magnetic field sensors applicable in biomedical, industrial and space-related applications.

2.
Nano Lett ; 15(3): 1751-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25621759

RESUMO

A central challenge in developing magnetically coupled quantum registers in diamond is the fabrication of nitrogen vacancy (NV) centers with localization below ∼20 nm to enable fast dipolar interaction compared to the NV decoherence rate. Here, we demonstrate the targeted, high throughput formation of NV centers using masks with a thickness of 270 nm and feature sizes down to ∼1 nm. Super-resolution imaging resolves NVs with a full-width maximum distribution of 26 ± 7 nm and a distribution of NV-NV separations of 16 ± 5 nm.

3.
Sci Rep ; 3: 2145, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23828320

RESUMO

Polymers have appealing optical, biochemical, and mechanical qualities, including broadband transparency, ease of functionalization, and biocompatibility. However, their low refractive indices have precluded wavelength-scale optical confinement and nanophotonic applications in polymers. Here, we introduce a suspended polymer photonic crystal (SPPC) architecture that enables the implementation of nanophotonic structures typically limited to high-index materials. Using the SPPC platform, we demonstrate nanophotonic band-edge filters, waveguides, and nanocavities featuring quality (Q) factors exceeding 2, 300 and mode volumes (V(mode)) below 1.7(λ/n)(3). The unprecedentedly high Q/V(mode) ratio results in a spectrally selective enhancement of radiative transitions of embedded emitters via the cavity Purcell effect with an enhancement factor exceeding 100. Moreover, the SPPC architecture allows straightforward integration of nanophotonic networks, shown here by a waveguide-coupled cavity drop filter with sub-nanometer spectral resolution. The nanoscale optical confinement in polymer promises new applications ranging from optical communications to organic opto-electronics, and nanophotonic polymer sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...